The uniformizability of L-topological groups #### Fatma Bayoumi Department of Mathematics, Faculty of Sciences, Benha University, Benha, P. O. 13518, Egypt #### Ismail Ibedou Department of Mathematics, Faculty of Sciences, Benha University, Benha, P. O. 13518, Egypt #### Abstract In this paper, we show that any L-topological group (G,τ) is uniformizable. That is, we define, using the family of prefilters which corresponds the L- neighborhood filter at the identity element of (G,τ) , unique left and right invariant L- uniform structures on G compatible with the L- topology τ . On the other hand, on any group G, using a family of prefilters on G fulfills certain conditions, we construct those left and right L- uniform structures which induce a L- topology τ on G for which (G,τ) is an L-topological group and this family of prefilters coincides with the family of prefilters corresponding to the L- neighborhood filter at the identity element of (G,τ) . Moreover, we show the relation between the L-topological groups and the GT_i -spaces, such as: the L- topology of an L-topological group (resp., a separated L-topological group) is completely regular (resp., $GT_{3\frac{1}{2}}$). Keywords: Fuzzy filters; Fuzzy uniform spaces; Fuzzy topological groups; GT_i -spaces; Completely regular spaces; $GT_{3\frac{1}{2}}$ -spaces; L-Tychonoff spaces. ## 1. Introduction The notion of an L-topological group (G, τ) is defined by Ahsanullah ([1]) in 1984 as an ordinary group G equipped with a L- topology τ on G such that the binary operation and the unary operation of the inverse are L- continuous with respect to τ . In [1, 7], many results on the L-topological groups are studied. These L-topological groups are called, in [1], L- topological groups. The L- neighborhood filter at the identity element of the L-topological group (G,τ) corresponds a family of prefilters on G ([11]). Using this family of prefilters, we construct, in this paper, a unique left invariant L- uniform structure \mathcal{U}^l and a unique right invariant L- uniform structure \mathcal{U}^r on G. These L- uniform structures \mathcal{U}^l and \mathcal{U}^r are compatible with τ , that is, $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau$. This means that the L-topological group (G,τ) is uniformizable. The L- uniform structures \mathcal{U}^l and \mathcal{U}^r are L- uniform structures in sense of [12] which are defined as L- filters on the cartesian product $G \times G$ of G with itself. We show also here that for any group G and any family of prefilters fulfills certain conditions, we define the left and the right L- uniform structures \mathcal{U}^l and \mathcal{U}^r on G such that $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r}$ is a L- topology τ on G for which the pair (G, τ) is an L-topological group. Moreover, this family of prefilters is exactly the family of prefilters which corresponds the L- neighborhood filter at the identity element of the L-topological group (G, τ) . Moreover, in this paper, we study some relations between the L-topological groups and the L- separation axioms GT_i which we had introduced in [2, 3, 5]. We show that the L- topology τ of an L-topological group (G, τ) is completely regular in our sense ([5]) and that the L-topological group (G, τ) is separated if and only if the L- topology τ is GT_0 (resp. GT_1 , GT_2 , $GT_{3\frac{1}{2}}$) if and only if the left L- uniform structure \mathcal{U}^l (resp. the right L- uniform structure \mathcal{U}^r) is separated. ### 2. On L- filters Let L be a complete chain with different least and greatest elements 0 and 1, respectively. Let $L_0 = L \setminus \{0\}$ and $L_1 = L \setminus \{1\}$. Denote by L^X the set of all L- subsets of a non-empty set X. By a L- filter on X ([9, 10]) is meant a mapping $\mathcal{M}: L^X \to L$ such that $\mathcal{M}(\overline{\alpha}) \leq \alpha$ holds for all $\alpha \in L$ and $\mathcal{M}(\overline{1}) = 1$, and also $\mathcal{M}(f \wedge g) = \mathcal{M}(f) \wedge \mathcal{M}(g)$ for all $f, g \in L^X$. A L- filter \mathcal{M} is called homogeneous if $\mathcal{M}(\overline{\alpha}) = \alpha$ for all $\alpha \in L$. If \mathcal{M} and \mathcal{N} are L- filters on X, \mathcal{M} is said to be finer than \mathcal{N} , denoted by, $\mathcal{M} \leq \mathcal{N}$, provided $\mathcal{M}(f) \geq \mathcal{N}(f)$ holds for all $f \in L^X$. By $\mathcal{M} \not\leq \mathcal{N}$ we denote that \mathcal{M} is not finer than \mathcal{N} . For any set A of L- filters on X, the infimum $\bigwedge_{\mathcal{M}\in A}\mathcal{M}$, with respect to the finer relation on L- filters, does not exist in general. The infimum $\bigwedge_{\mathcal{M}\in A}\mathcal{M}$ of A exists if and only if for each non-empty finite subset $\{\mathcal{M}_1,\ldots,\mathcal{M}_n\}$ of A we have $\mathcal{M}_1(f_1)\wedge\cdots\wedge\mathcal{M}_n(f_n)\leq\sup(f_1\wedge\cdots\wedge f_n)$ for all $f_1,\ldots,f_n\in L^X$ ([9]). If the infimum of A exists, then for each $f\in L^X$ and n as a positive integer we have $$\left(\bigwedge_{\mathcal{M}\in A}\mathcal{M}\right)(f) = \bigvee_{\substack{f_1\wedge\dots\wedge f_n\leq f,\\M_1,\dots,M_n\in A}} \left(\mathcal{M}_1(f_1)\wedge\dots\wedge\mathcal{M}_n(f_n)\right).$$ A prefilter on X is a non-empty subset \mathcal{F} of L^X which does not contain $\overline{0}$ and closed under finite infima and super sets ([15]). For each L- filter \mathcal{M} on X, the subset α -pr \mathcal{M} of L^X defined by: $$\alpha$$ -pr $\mathcal{M} = \{ f \in L^X \mid \mathcal{M}(f) \ge \alpha \}$ is a prefilter on X. A valued L- filter base on a set X ([10]) is a family $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ of non-empty subsets of L^X such that the following conditions are fulfilled: - (V1) $f \in \mathcal{B}_{\alpha}$ implies $\alpha \leq \sup f$. - (V2) For all $\alpha, \beta \in L_0$ and all mappings $f \in \mathcal{B}_{\alpha}$ and $g \in \mathcal{B}_{\beta}$, if even $\alpha \wedge \beta > 0$ holds, then there are a $\gamma \geq \alpha \wedge \beta$ and a L- set $h \leq f \wedge g$ such that $h \in \mathcal{B}_{\gamma}$. Each valued L- filter base $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ on a set X defines a L- filter \mathcal{M} on X by $\mathcal{M}(f) = \bigvee_{g \in \mathcal{B}_{\alpha}, g \leq f} \alpha$ for all $f \in L^X$. On the other hand, each L- filter \mathcal{M} can be generated by many valued L- filter bases, and among them the greatest one $(\alpha\text{-pr }\mathcal{M})_{\alpha\in L_0}$. **Proposition 2.1** [10] There is a one-to-one correspondence between the L- filters \mathcal{M} on X and the families $(\mathcal{M}_{\alpha})_{\alpha \in L_0}$ of prefilters on X which fulfill the following conditions: - (1) $f \in \mathcal{M}_{\alpha} \text{ implies } \alpha \leq \sup f$. - (2) $0 < \alpha \leq \beta \text{ implies } \mathcal{M}_{\alpha} \supseteq \mathcal{M}_{\beta}.$ - (3) For each $\alpha \in L_0$ with $\bigvee_{0 < \beta < \alpha} \beta = \alpha$ we have $\bigcap_{0 < \beta < \alpha} \mathcal{M}_{\beta} = \mathcal{M}_{\alpha}$. This correspondence is given by $\mathcal{M}_{\alpha} = \alpha\text{-pr }\mathcal{M}$ for all $\alpha \in L_0$ and $\mathcal{M}(f) = \bigvee_{g \in \mathcal{M}_{\alpha}, g \leq f} \alpha$ for all $f \in L^X$. Fuzzy neighborhood filters. In the following the L- topology τ on a set X in sense of ([8, 13]) will be used. $\operatorname{int}_{\tau}$ and cl_{τ} denote the interior and the closure operators with respect to τ , respectively. For each L- topological space (X, τ) and each $x \in X$ the mapping $\mathcal{N}(x) : L^X \to L$ defined by $$\mathcal{N}(x)(f) = \operatorname{int}_{\tau} f(x)$$ for all $f \in L^X$ is a L- filter on X, called the L- neighborhood filter of the space (X, τ) at x ([11]). $f \in L^X$ is called a τ -neighborhood at $x \in X$ provided $\alpha \leq \operatorname{int}_{\tau} f(x)$ for some $\alpha \in L_0$. That is, f is a τ -neighborhood at x if $f \in \alpha$ -pr $\mathcal{N}(x)$ for some $\alpha \in L_0$. Let (X, τ) and (Y, σ) be two L- topological spaces. Then the mapping $f: (X, \tau) \to (Y, \sigma)$ is called L- continuous (or (τ, σ) -continuous) provided $$\operatorname{int}_{\sigma} g \circ f \leq \operatorname{int}_{\tau}(g \circ f) \text{ for all } g \in L^{Y}.$$ ## 3. L-topological groups In the following we focus our study on a multiplicative group G. We denote, as usual, the identity element of G by e and the inverse of an element a of G by a^{-1} . Let $\pi: G \times G \to G$ be a mapping defined by $$\pi(a,b) = ab$$ for all $a,b \in G$, and $i: G \to G$ a mapping defined by $$i(a) = a^{-1}$$ for all $a \in G$, that is, π and i are the binary operation and the unary operation of the inverse on G, respectively. Here, we define the product of $f, g \in L^G$ with respect to the binary operation π on G as the L- set fg in G defined by: $$fg = \bigwedge_{f(x)>0, g(y)>0} (xy)_1.$$ (3.1) In particular, for all $a \in G$ and all $f \in L^G$, we have $af \in L^G$ defined by $$af = \bigwedge_{f(x)>0} (ax)_1 \tag{3.2}$$ and $fa \in L^G$ defined by $$fa = \bigwedge_{f(x)>0} (xa)_1 \tag{3.3}$$ Also, we can define the inverse of $f \in L^G$ with respect to the unary operation i on G as the L- set f^{-1} on G by: $$f^{-1}(x) = f(x^{-1})$$ for all $x \in G$. (3.4) The following definitions are similar to those in [14]. **Definition 3.1** Let τ be a L- topology on a group G. The mapping $\pi: (G \times G, \tau \times \tau) \to (G, \tau)$ is called $(\tau \times \tau, \tau)$ -continuous in each variable separately if for all $f \in \alpha$ -pr $\mathcal{N}(ab)$, there exists $g \in \alpha$ -pr $\mathcal{N}(b)$ such that $ag \leq f$ or there exists $h \in \alpha$ -pr $\mathcal{N}(a)$ such that $hb \leq f$ for some $\alpha \in L_0$ and for all $a, b \in G$. **Definition 3.2** Let G be a group and τ be a L- topology on G. Then the pair (G, τ) will be called a semi-L-topological group if the mapping π is $(\tau \times \tau, \tau)$ -continuous in each variable separately. **Definition 3.3** The mapping π is called $(\tau \times \tau, \tau)$ -continuous everywhere if for all $f \in \alpha$ -pr $\mathcal{N}(ab)$, there exist $g \in \alpha$ -pr $\mathcal{N}(a)$ and $h \in \alpha$ -pr $\mathcal{N}(b)$ such that $gh \leq f$ for some $\alpha \in L_0$ and for all $a, b \in G$. **Definition 3.4** The mapping i is called (τ, τ) -continuous if for all $f \in \alpha$ -pr $\mathcal{N}(a^{-1})$, there exists an $g \in \alpha$ -pr $\mathcal{N}(a)$ such that $g^{-1} \leq f$ for some $\alpha \in L_0$ and for all $a \in G$. **Definition 3.5** [1] Let G be a group and τ be a L- topology on G. Then the pair (G, τ) will be called an L-topological group if the mapping π is $(\tau \times \tau, \tau)$ -continuous everywhere and the mapping i is (τ, τ) -continuous. Clearly, every L-topological group is a semi – L-topological group. **Proposition 3.1** The pair (G, τ) is an L-topological group if and only if for all $f \in \alpha\text{-pr }\mathcal{N}(a^{-1}b)$, there exist $g \in \alpha\text{-pr }\mathcal{N}(a)$ and $h \in \alpha\text{-pr }\mathcal{N}(b)$ such that $g^{-1}h \leq f$ for some $\alpha \in L_0$ and for all $a, b \in G$. #### **Proof.** Obvious. \square Let us call a L- set $f \in L^G$ symmetric if the inverse f^{-1} , defined by (3.4), fulfills that $f = f^{-1}$. For each group G and $a \in G$, the *left* and *right translations* are the homomorphisms $l_a : G \to G$ defined by $l_a(x) = ax$ and $R_a : G \to G$ defined by $R_a(x) = xa$ for each $x \in G$, respectively. The left and right translations in L-topological groups fulfill the following result. **Proposition 3.2** [7] Let (G, τ) be an L-topological group. Then for each $a \in G$ the left and right translations l_a and R_a are L-homeomorphisms. We shall use the following result. **Lemma 3.1** Let f be an open L- set in an L-topological group (G, τ) . Then for any $x_0 \in G$ the L- sets fx_0 and x_0f are also open. **Proof.** Consider the mapping $$h: G \to G \times G, \ x \mapsto (x_0^{-1}, x)$$ and the projection mappings $$p_1: G \times G \to G, \ (x_1, x_2) \mapsto x_1$$ and $$p_2: G \times G \to G, \ (x_1, x_2) \mapsto x_2.$$ Then $(p_1 \circ h)(x) = x_0^{-1}$ and $(p_2 \circ h)(x) = x$. Since $(p_1 \circ h)$ and $(p_2 \circ h)$ are (τ, τ) -continuous, then h is also $(\tau, \tau \times \tau)$ -continuous. Now, we have $$\pi: G \times G \to G, (x_1, x_2) \mapsto x_1 x_2$$ is $(\tau \times \tau, \tau)$ -continuous, and thus the mapping $\lambda = \pi \circ h$, for which $\lambda(x) = \pi(h(x)) = \pi(x_0^{-1}, x) = x_0^{-1}x$ for all $x \in G$, is (τ, τ) -continuous. Also, $\lambda^{-1}(x_0^{-1}x) = x$ for all $x \in G$, that is, $\lambda^{-1}(x) = x_0x$ for all $x \in G$. In particular, $x_0f = \lambda^{-1}(f)$ is a L- open set in (G, τ) . fx_0 is also open with a similar proof. \square Recall that: If $f: X \to Y$ is a mapping between the non-empty sets X and Y and $h \in L^Y$, then the *preimage* $f^{-1}(h)$ of h with respect to f is defined by $f^{-1}(h) = h \circ f$. Now, we prove the following result. **Lemma 3.2** Let (G, τ) be an L-topological group and $x_0 \in G$. Then $f \in \alpha$ -pr $\mathcal{N}(e)$ if and only if $x_0 f \in \alpha$ -pr $\mathcal{N}(x_0)$ if and only if $fx_0 \in \alpha$ -pr $\mathcal{N}(x_0)$. **Proof.** Since the mapping $\lambda = \pi \circ h$, as in Lemma 3.1, is (τ, τ) -continuous, then $\operatorname{int}_{\tau} g \circ \lambda \leq \operatorname{int}_{\tau} (g \circ \lambda)$ for all $g \in L^G$. That is, $$\operatorname{int}_{\tau} f(x_0^{-1} x) = \operatorname{int}_{\tau} f(\lambda(x)) \le \operatorname{int}_{\tau} (f \circ \lambda)(x) = \operatorname{int}_{\tau} (\lambda^{-1}(f))(x) = \operatorname{int}_{\tau} (x_0 f)(x)$$ for all $x \in G$ and all $f \in L^G$. Hence, $f \in \alpha$ -pr $\mathcal{N}(e)$ if and only if $x_0 f \in \alpha$ -pr $\mathcal{N}(x_0)$. The other case is similar and the proof is then complete. \square # 4. L-topological groups and their canonical L- uniform structures In the sequel we show that for each L-topological group (G, τ) , there are unique left and right invariant L- uniform structures on G compatible with τ . For a family $(\mathcal{V}_{\alpha})_{\alpha \in L_0}$ of subsets \mathcal{V}_{α} of L^X , consider the following conditions: - (e1) For all $\alpha \in L_0$, if $0 < \beta \le \alpha$, then $\mathcal{V}_{\alpha} \subseteq \mathcal{V}_{\beta}$, - (e2) For all $\alpha \in L_0$ with $\bigvee_{0 < \beta < \alpha} \beta = \alpha$, we have $\mathcal{V}_{\alpha} = \bigcap_{0 < \beta < \alpha} \mathcal{V}_{\beta}$, - (e3) For all $\alpha \in L_0$ and all $f \in \mathcal{V}_{\alpha}$, we have $\alpha \leq \sup f$, - (e4) For all $\alpha \in L_0$ and all $f \in \mathcal{V}_{\alpha}$, there exists $g \in \mathcal{V}_{\alpha}$ such that $g^{-1} \leq f$, - (e5) For all $\alpha \in L_0$ and all $f \in \mathcal{V}_{\alpha}$, there exists $g \in \mathcal{V}_{\alpha}$ such that $gg \leq f$. **Proposition 4.1** Let $\mathcal{N}(e)$ be the L- neighborhood filter at the identity element e of an L-topological group (G,τ) . Then the family $(\alpha\operatorname{-pr}\mathcal{N}(e))_{\alpha\in L_0}$ of prefilters $\alpha\operatorname{-pr}\mathcal{N}(e)$ fulfills the conditions (e1) - (e5). **Proof.** Since $0 < \beta \le \alpha$ and $f \in \alpha\text{-pr}\mathcal{N}(e)$ imply that $\beta \le \alpha \le \operatorname{int}_{\tau} f(e)$, then $f \in \beta\text{-pr}\mathcal{N}(e)$. Hence, $\alpha\text{-pr}\mathcal{N}(e) \subseteq \beta\text{-pr}\mathcal{N}(e)$, and (e1) is fulfilled. From (e1), we get that α -pr $\mathcal{N}(e) \subseteq \bigcap_{0 < \beta < \alpha} \beta$ -pr $\mathcal{N}(e)$. Now, if $f \in \bigcap_{0 < \beta < \alpha} \beta$ -pr $\mathcal{N}(e)$, then $f \in \beta$ -pr $\mathcal{N}(e)$ for all $\beta \in L_0$ with $\alpha = \bigvee_{0 < \beta < \alpha} \beta$, which means that $f \in \alpha$ -pr $\mathcal{N}(e)$ and hence (e2) holds. (e3) is evident. Since $i(e) = e^{-1} = e$ and i is (τ, τ) -continuous, then (e4) is fulfilled. since $\pi(e,e)=ee=e$ and π is $(\tau\times\tau,\tau)$ -continuous everywhere, then (e5) is fulfilled. \square Fuzzy uniform structures. Let \mathcal{U} be a L- filter on $X \times X$. The inverse \mathcal{U}^{-1} of \mathcal{U} is a L- filter on $X \times X$ defined by $\mathcal{U}^{-1}(u) = \mathcal{U}(u^{-1})$ for all $u \in L^{X \times X}$, where u^{-1} is the inverse of u defined by: $u^{-1}(x,y) = u(y,x)$ for all $x,y \in X$. Let, each $\alpha \in L$, $\widetilde{\alpha}$ denote the constant mapping : $X \times X \to L$ defined by $\widetilde{\alpha}(x,y) = \alpha$ for all $x,y \in X$ ([12]). For each pair (x,y) of elements x,y of X, the mapping $(x,y)^{\bullet}: L^{X\times X} \to L$ defined by $(x,y)^{\bullet}(u) = u(x,y)$ for all $u \in L^{X\times X}$ is a homogeneous L- filter on $X\times X$. Let $\mathcal U$ and $\mathcal V$ be L- filters on $X\times X$ such that $(x,y)^{\bullet}\leq \mathcal U$ and $(y,z)^{\bullet}\leq \mathcal V$ hold for some $x,y,z\in X$. Then the *composition* $\mathcal V\circ\mathcal U$ of $\mathcal U$ and $\mathcal V$ is ([12]) the L-filter on $X\times X$ defined by $$(\mathcal{V} \circ \mathcal{U})(w) = \bigvee_{v \circ u \le w} (\mathcal{U}(u) \wedge \mathcal{V}(v))$$ (4.1) for all $w \in L^{X \times X}$, where $u, v, v \circ u \in L^{X \times X}$ and $$(v \circ u)(x,y) = \bigvee_{z \in X} (u(x,z) \wedge v(z,y))$$ $$(4.2)$$ for all $x, y \in X$. By a L- uniform structure $\mathcal U$ on a set X ([12]) we mean a L- filter on $X \times X$ such that: (U1) $(x,x)^{\cdot} \leq \mathcal{U}$ for all $x \in X$. (U2) $$U = U^{-1}$$. (U3) $$\mathcal{U} \circ \mathcal{U} \leq \mathcal{U}$$. A set X equipped with a L- uniform structure \mathcal{U} is called a L- uniform space. For any complete chain we have the following result. **Lemma 4.1** The supremum of two L- uniform structures is a L- uniform structure. **Proof.** Clear. \square **Proposition 4.2** [12] There is a one - to - one correspondence between the L-uniform structures \mathcal{U} on X and the families $(\mathcal{U}_{\alpha})_{\alpha \in L_0}$ of prefilters on $X \times X$ which fulfill the following conditions: - (u1) $0 < \beta \leq \alpha \text{ implies } \mathcal{U}_{\alpha} \subseteq \mathcal{U}_{\beta}.$ - (u2) For each $\alpha \in L_0$ with $\bigvee_{0 < \beta < \alpha} \beta = \alpha$, we have $\mathcal{U}_{\alpha} = \bigcap_{0 < \beta < \alpha} \mathcal{U}_{\beta}$. - (u3) For all $\alpha \in L_0$, $u \in \mathcal{U}_{\alpha}$ and $x \in X$, we have $\alpha \leq u(x, x)$. - (u4) $u \in \mathcal{U}_{\alpha} \text{ implies } u^{-1} \in \mathcal{U}_{\alpha} \text{ for all } \alpha \in L_0.$ - (u5) For each $\alpha \in L_0$ and each $u \in \mathcal{U}_{\alpha}$, we have $\alpha \leq \bigvee_{v \in \mathcal{U}_{\beta}, v \circ v \leq u} \beta$. This correspondence is given by $\mathcal{U}_{\alpha} = \alpha \operatorname{-pr} \mathcal{U}$ for all $\alpha \in L_0$ and $\mathcal{U}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}, v \leq u} \alpha$ for all $u \in L^{X \times X}$. Now we shall prove the following important results in which those conditions (e1) - (e5) for the family $(\alpha\text{-pr}\mathcal{N}(e))_{\alpha\in L_0}$ are necessary to construct L- uniform structures by which the L-topological group (G,τ) is uniformizable. First, we construct these L- uniform structures and then, in another proposition, we show that (G, τ) is uniformizable. **Proposition 4.3** Let (G, τ) be an L-topological group. Then the families $(\mathcal{U}_{\alpha}^{l})_{\alpha \in L_{0}}$ and $(\mathcal{U}_{\alpha}^{r})_{\alpha \in L_{0}}$ of the subsets \mathcal{U}_{α}^{l} and \mathcal{U}_{α}^{r} of $L^{G \times G}$ defined by $$\mathcal{U}_{\alpha}^{l} = \{ u \in L^{G \times G} \mid u(x, y) = (f \wedge f^{-1})(x^{-1}y) \text{ for some } f \in \alpha\text{-pr}\,\mathcal{N}(e) \}$$ (4.3) and $$\mathcal{U}_{\alpha}^{r} = \{ u \in L^{G \times G} \mid u(x, y) = (f \wedge f^{-1})(xy^{-1}) \text{ for some } f \in \alpha \text{-pr } \mathcal{N}(e) \}$$ (4.4) correspond L- uniform structures \mathcal{U}^l and \mathcal{U}^r on G, respectively by the following: $$\mathcal{U}_{\alpha}^{l} = \alpha \operatorname{-pr} \mathcal{U}^{l} \qquad and \qquad \mathcal{U}^{l}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}^{l}, v \leq u} \alpha$$ (4.5) and $$\mathcal{U}_{\alpha}^{r} = \alpha \operatorname{-pr} \mathcal{U}^{r} \qquad and \qquad \mathcal{U}^{r}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}^{r}, v \leq u} \alpha.$$ (4.6) **Proof.** Since $\tilde{0}(x,x) = 0 \neq 1 = (f \wedge f^{-1})(e) = (f \wedge f^{-1})(x^{-1}x)$ for all $f \in \alpha$ -pr $\mathcal{N}(e)$ and all $x \in G$, then $\tilde{0} \notin \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$. Also, $\tilde{1} \in \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$, from that there exists a symmetric L- set $f = e_{1} = (x^{-1}yy^{-1}x)_{1} = (x^{-1}y)_{1}(y^{-1}x)_{1} \in \alpha$ -pr $\mathcal{N}(e)$ such that $(f \wedge f^{-1})(x^{-1}y) = f(x^{-1}y) \wedge f(y^{-1}x) = 1$ for all $x, y \in G$. Let $u \in \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$ and $v \geq u$. Then $v(x,y) \geq (f \wedge f^{-1})(x^{-1}y)$ for some $f \in \alpha\text{-pr}\mathcal{N}(e)$ and for all $x,y \in G$. But $v \leq \tilde{1} \in \mathcal{U}_{\alpha}^{l}$ implies that there is $g \in \alpha\text{-pr}\mathcal{N}(e)$ such that $v(x,y) \leq (g \wedge g^{-1})(x^{-1}y)$ for all $x,y \in G$. That is, there is some $h \in \alpha\text{-pr}\mathcal{N}(e)$ such that $v(x,y) = (h \wedge h^{-1})(x^{-1}y)$ for all $x,y \in G$. Hence $v \in \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$. Since $(f \wedge g) \in \alpha\text{-pr}\mathcal{N}(e)$ whenever $f \in \alpha\text{-pr}\mathcal{N}(e)$ and $g \in \alpha\text{-pr}\mathcal{N}(e)$, then for any $u, v \in \mathcal{U}^l_{\alpha}$, we get that $$(u \wedge v)(x,y) = u(x,y) \wedge v(x,y)$$ $$= (f \wedge f^{-1})(x^{-1}y) \wedge (g \wedge g^{-1})(x^{-1}y) \text{ for some } f,g \in \alpha\text{-pr}\mathcal{N}(e)$$ $$= ((f \wedge g) \wedge (f \wedge g)^{-1})(x^{-1}y) \text{ for some } f,g \in \alpha\text{-pr}\mathcal{N}(e).$$ Hence $(u \wedge v) \in \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$. Thus \mathcal{U}_{α}^{l} is a prefilter on $G \times G$ for all $\alpha \in L_{0}$. Now, let $0 < \beta \le \alpha$ and $u \in \mathcal{U}_{\alpha}^{l}$. Then from (e1) for the family $(\alpha \operatorname{-pr} \mathcal{N}(e))_{\alpha \in L_{0}}$, we get that $u(x,y) = (g \wedge g^{-1})(x^{-1}y)$ for some $g \in \beta \operatorname{-pr} \mathcal{N}(e)$ for all $x,y \in G$, and then $u \in \mathcal{U}_{\beta}^{l}$. Hence, the condition (u1) of Proposition 4.2 holds. From (u1) of Proposition 4.2 and from (e2) for $(\alpha \operatorname{-pr} \mathcal{N}(e))_{\alpha \in L_0}$, we get that (u2) of Proposition 4.2 is fulfilled. From (e3) and (e4) for $(\alpha\text{-pr}\mathcal{N}(e))_{\alpha\in L_0}$, we have for all $\alpha\in L_0$ and all $u\in\mathcal{U}_{\alpha}^l$ that $$u(x,x) = (f \wedge f^{-1})(x^{-1}x) = (f \wedge f^{-1})(e) \ge \alpha$$ for some $f \in \alpha$ -pr $\mathcal{N}(e)$. Hence, (u3) of Proposition 4.2 holds. For all $\alpha \in L_0$ and all $u \in \mathcal{U}_{\alpha}^l$, we have for all $x, y \in G$ that $$u^{-1}(x,y) = u(y,x) = (f \wedge f^{-1})(y^{-1}x)$$ for some $f \in \alpha$ -pr $\mathcal{N}(e)$. Since (3.4) implies, for all $x, y \in G$, that $$(f \wedge f^{-1})(x^{-1}y) = f(x^{-1}y) \wedge f^{-1}(x^{-1}y) = f^{-1}(y^{-1}x) \wedge f(y^{-1}x) = (f \wedge f^{-1})(y^{-1}x),$$ that is, u(x,y) = u(y,x) for all $x,y \in G$, then $u \in \mathcal{U}_{\alpha}^{l}$ if and only if $u^{-1} \in \mathcal{U}_{\alpha}^{l}$ and thus (u4) of Proposition 4.2 holds. From (e5) for $(\alpha\text{-pr}\mathcal{N}(e))_{\alpha\in L_0}$, we have for all $\alpha\in L_0$ and all $f\in \alpha\text{-pr}\mathcal{N}(e)$ that there exists $g\in \beta\text{-pr}\mathcal{N}(e)$, $\beta\in L_0$, such that $gg\leq f$. For any $u\in \mathcal{U}_{\alpha}^l$ and all $x,y\in G$, we have $u(x,y)=(f\wedge f^{-1})(x^{-1}y)$ for some $f\in \alpha\text{-pr}\mathcal{N}(e)$, which means that there exists $v\in \mathcal{U}_{\beta}^l$, $\beta\in L_0$, such that (4.2) implies for all $x,y\in G$ that: $$\begin{array}{lcl} (v \circ v)(x,y) & = & \bigvee_{z \in G} (v(x,z) \wedge v(z,y)) \\ \\ & = & \bigvee_{z \in G} ((g \wedge g^{-1})(x^{-1}z) \wedge (g \wedge g^{-1})(z^{-1}y)) \\ \\ & \leq & (f \wedge f^{-1})(x^{-1}y) \\ \\ & = & u(x,y). \end{array}$$ Hence, by means of (e5) for $(\alpha \operatorname{-pr} \mathcal{N}(e))_{\alpha \in L_0}$, we get $$\alpha \le \bigvee_{v \in \mathcal{U}_{\alpha}^{l}, (v \circ v) \le u} \beta = \bigvee_{g \in \beta \text{-pr } \mathcal{N}(e), gg \le f} \beta$$ and then (u5) of Proposition 4.2 holds. Now, we have the family $(\mathcal{U}_{\alpha}^{l})_{\alpha\in L_{0}}$ is a family of prefilters on $G\times G$ and fulfills the conditions (u1) - (u5). From Proposition 4.2, we get that $(\mathcal{U}_{\alpha}^{l})_{\alpha\in L_{0}}$ corresponds a L- uniform structure \mathcal{U}^{l} on G. This correspondence is given by $$\mathcal{U}^l(u) = \bigvee_{v \in \mathcal{U}^l_{\alpha}, v \le u} \alpha \text{ and } \mathcal{U}^l_{\alpha} = \alpha \text{-pr } \mathcal{U}^l.$$ The same proof can be done with the family $(\mathcal{U}_{\alpha}^r)_{\alpha \in L_0}$. \square **Definition 4.1** \mathcal{U}^l and \mathcal{U}^r defined by (4.5) and (4.6) are called *left* L- uniform structure and *right* L- uniform structure on G, respectively. An L-topological group (G, τ) is called *abelian* if the group G is abelian. **Proposition 4.4** For abelian L-topological groups, the left and the right L- uniform structures coincide. **Proof.** Since $$(f \wedge f^{-1})(x^{-1}y) = (f \wedge f^{-1})(y^{-1}x) = (f \wedge f^{-1})(xy^{-1})$$ for all $x, y \in G$ and for some $f \in \alpha$ -pr $\mathcal{N}(e)$, then $\mathcal{U}_{\alpha}^{l} = \mathcal{U}_{\alpha}^{r}$ for all $\alpha \in L_{0}$. Therefore, $\mathcal{U}^{l} = \mathcal{U}^{r}$. \square Let \mathcal{U} be a L- filter on $X \times X$ such that $(x, x)^{\bullet} \leq \mathcal{U}$ holds for all $x \in X$, and let \mathcal{M} be a L- filter on X. Then the mapping $\mathcal{U}[\mathcal{M}]: L^X \to L$, defined by $$\mathcal{U}[\mathcal{M}](f) = \bigvee_{u[g] \le f} (\mathcal{U}(u) \wedge \mathcal{M}(g))$$ (4.7) for all $f \in L^X$, is a L- filter on X, called the image of \mathcal{M} with respect to \mathcal{U} ([12]), where $u \in L^{X \times X}$ and $g, u[g] \in L^X$ such that: $$u[g](x) = \bigvee_{y \in X} (g(y) \wedge u(y, x)). \tag{4.8}$$ **Proposition 4.5** [12] Let \mathcal{U} be a L- filter on $X \times X$ such that $(x, x)^{\bullet} \leq \mathcal{U}$ holds for all $x \in X$, and let \mathcal{M} be a L- filter on X. Then the family $(\mathcal{L}_{\alpha})_{\alpha \in L_0}$ with $$\mathcal{L}_{\alpha} = \{ f \in L^X \mid u[g] \leq f \text{ for some } u \in \alpha\text{-pr}\mathcal{U} \text{ and } g \in \alpha\text{-pr}\mathcal{M} \}$$ is a valued L- filter base of $\mathcal{U}[\mathcal{M}]$, which consists of prefilters on X such that $\alpha \leq \beta$ implies $\mathcal{L}_{\alpha} \supseteq \mathcal{L}_{\beta}$ for all $\alpha, \beta \in L_0$. **Remark 4.1** From Proposition 4.5, we get for a L- uniform structure \mathcal{U} on X and a homogeneous L- filter \dot{x} at $x \in X$, that the family $(\mathcal{L}_{\alpha})_{\alpha \in L_0}$ with $$\mathcal{L}_{\alpha} = \{ f \in L^X \mid u[g] \le f \text{ for some } u \in \alpha\text{-pr}\,\mathcal{U} \text{ and } \alpha \le g(x) \}$$ (4.9) is a valued L- filter base of $\mathcal{U}[\dot{x}]$, and moreover $\mathcal{L}_{\alpha} = \alpha$ -pr $\mathcal{U}[\dot{x}]$ for all $\alpha \in L_0$. To each L- uniform structure \mathcal{U} on X is associated a stratified L- topology $\tau_{\mathcal{U}}$. The related interior operator $\operatorname{int}_{\mathcal{U}}$ is given by ([12]): $$(\operatorname{int}_{\mathcal{U}} f)(x) = \mathcal{U}[\dot{x}](f) \tag{4.10}$$ for all $x \in X$, $f \in L^X$. A L- set $f \in L^X$ is called a $\tau_{\mathcal{U}}$ -neighborhood of $x \in X$ provided $\alpha \leq \operatorname{int}_{\mathcal{U}} f(x)$ for some $\alpha \in L_0$. In the following proposition, we show that every L-topological group is uniformizable. **Proposition 4.6** Any L-topological group (G, τ) is uniformizable. That is, $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)} = \tau$. **Proof.** From Lemma 4.1 and Proposition 4.3, we get that both of \mathcal{U}^l , \mathcal{U}^r and $\mathcal{U}^l \vee \mathcal{U}^r$ are L- uniform structures on G. Since for all $x \in G$ and all $f \in L^G$ we have, from (4.7), (4.10) and Remark 4.1, that: $$\operatorname{int}_{\mathcal{U}^l} f(x) = \mathcal{U}^l[\dot{x}](f) = \bigvee_{u[g] \le f} (\mathcal{U}^l(u) \land g(x)) = 1$$ is equivalent to $$\operatorname{int}_{\mathcal{U}^r} f(x) = \mathcal{U}^r[\dot{x}](f) = \bigvee_{u[g] \le f} (\mathcal{U}^r(u) \land g(x)) = 1$$ equivalent to $$\operatorname{int}_{(\mathcal{U}^l\vee\mathcal{U}^r)}f(x)=(\mathcal{U}^l\vee\mathcal{U}^r)[\dot{x}](f)=\bigvee_{u[g]\leq f}((\mathcal{U}^l\vee\mathcal{U}^r)(u)\wedge g(x))=1,$$ which means that f is a $\tau_{\mathcal{U}^l}$ -neighborhood of an element x if and only if it is a $\tau_{\mathcal{U}^r}$ -neighborhood of x if and only if it is a $\tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$ -neighborhood of x. Hence, $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$. From (4.7) and (4.8), and also from Remark 4.1, we have $$\mathcal{U}^{l}[\dot{x}](f) = \bigvee_{g \in \alpha \text{-} \operatorname{pr} \mathcal{U}^{l}[\dot{x}], g \leq f} \alpha$$ $$= \bigvee_{u[g] \leq f} (\mathcal{U}^{l}(u) \wedge g(x))$$ $$= \bigvee_{h \in \alpha \text{-} \operatorname{pr} \mathcal{N}(x), h \leq f} \alpha$$ $$= \mathcal{N}(x)(f)$$ for all $x \in G$ and all $f \in L^G$. Hence, the L- neighborhood filter $\mathcal{U}^l[\dot{x}]$ of $(G, \tau_{\mathcal{U}^l})$ at every $x \in G$ is identical with the L- neighborhood filter $\mathcal{N}(x)$ at every x in the L-topological group (G, τ) . Thus, $\tau_{\mathcal{U}^l} = \tau$, and therefore (G, τ) is uniformizable. \square In the following we show that these conditions (e1) - (e5) for a family of prefilters on G are also sufficient to construct from the group G an L-topological group. **Proposition 4.7** Let G be a group and e the identity element of G, and let $(\mathcal{V}_{\alpha}^{e})_{\alpha \in L_{0}}$ be a family of prefilters on G fulfilling conditions (e1) - (e5). Defining, for each $\alpha \in L_{0}$, the subsets $$\mathcal{U}_{\alpha}^{l} = \{u \in L^{G \times G} \mid u(x,y) = (f \wedge f^{-1})(x^{-1}y) \text{ for some } f \in \mathcal{V}_{\alpha}^{e}\}$$ and $$\mathcal{U}_{\alpha}^r = \{u \in L^{G \times G} \mid u(x,y) = (f \wedge f^{-1})(xy^{-1}) \text{ for some } f \in \mathcal{V}_{\alpha}^e\}$$ of $L^{G\times G}$. Hence, we have the left and the right L- uniform structures \mathcal{U}^l and \mathcal{U}^r on G defined by (4.5) and (4.6), respectively. Moreover, $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$ is a L-topology τ on G for which the pair (G,τ) is an L-topological group. Finally, for each $\alpha \in L_0$, we have $\mathcal{V}^e_{\alpha} = \alpha\text{-pr}\mathcal{N}(e)$, where $\mathcal{N}(e)$ is the L- neighborhood filter at e with respect to the L- topology τ on G. **Proof.** As in Propositions 4.3 and 4.6, we get that \mathcal{U}^l and \mathcal{U}^r are the left and the right L- uniform structures on G for which $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$ is a L- topology on the group G. Denote $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$ by τ . It remains to prove that (G, τ) is an L-topological group and that $\mathcal{V}_{\alpha}^{e} = \alpha \operatorname{-pr} \mathcal{N}(e)$ for all $\alpha \in L_{0}$. Now, from that the conditions of Proposition 2.1 are equivalent to the conditions (e1) - (e3), we get that $$\mathcal{V}_{\alpha}^{e} = \alpha \operatorname{-pr} \mathcal{U}^{l}[\dot{e}] = \alpha \operatorname{-pr} \mathcal{U}^{r}[\dot{e}] = \alpha \operatorname{-pr} (\mathcal{U}^{l} \vee \mathcal{U}^{r})[\dot{e}]$$ for all $\alpha \in L_0$. That is, $\mathcal{V}_{\alpha}^e = \alpha \operatorname{-pr} \mathcal{N}(e)$ for all $\alpha \in L_0$, where $\mathcal{N}(e)$ is the L-neighborhood filter of (G, τ) at e. From conditions (e4) and (e5) of the prefilters α -pr $\mathcal{N}(e)$ for all $\alpha \in L_0$, we get that for all $f \in \alpha$ -pr $\mathcal{N}(e)$, there exist $g, h \in \alpha$ -pr $\mathcal{N}(e)$ for some $\alpha \in L_0$ such that $g^{-1}h \leq f$, which means that $$(ga)^{-1}(hb) = a^{-1}(g^{-1}h)b \le a^{-1}fb.$$ That is, from Lemma 3.2, we get that for all $\lambda = a^{-1}fb \in \alpha$ -pr $\mathcal{N}(a^{-1}b)$, there exist $\mu = ga \in \alpha$ -pr $\mathcal{N}(a)$ and $\nu = hb \in \alpha$ -pr $\mathcal{N}(b)$ such that $\mu^{-1}\nu \leq \lambda$. Hence, (G, τ) is an L-topological group. \square Let us define the following. #### **Definition 4.2** Let \mathcal{U} be a L- uniform structure on a set X. Then - (1) $u \in L^{X \times X}$ is called a *surrounding* provided $\mathcal{U}(u) \geq \alpha$ for some $\alpha \in L_0$ and $u = u^{-1}$, - (2) A surrounding $u \in L^{X \times X}$ is called *left (right) invariant* provided $$u(ax, ay) = u(x, y)$$ $(u(xa, ya) = u(x, y))$ for all $a, x, y \in X$, (3) \mathcal{U} is called a *left* (*right*) *invariant* L- uniform structure if \mathcal{U} has a valued Lfilter base consists of left (right) invariant surroundings. Now, from Proposition 4.3, we have this remark. **Remark 4.2** In the *L*-topological group (G, τ) , for each element u in \mathcal{U}_{α}^{l} , defined by (4.3), we have $\mathcal{U}_{\alpha}^{l}(u) \geq \alpha$ for some $\alpha \in L_{0}$ and also, for all $x, y \in G$ and each $u \in \mathcal{U}_{\alpha}^{l}$, we have $$u(x,y) = (f \wedge f^{-1})(x^{-1}y)$$ for some $f \in \alpha$ -pr $\mathcal{N}(e)$ $= (f \wedge f^{-1})(y^{-1}x)$ for some $f \in \alpha$ -pr $\mathcal{N}(e)$ $= u(y,x)$ $= u^{-1}(x,y).$ That is, \mathcal{U}_{α}^{l} is a prefilter of surroundings. Also, for all $a, x, y \in G$, we have $$u(ax, ay) = (f \wedge f^{-1})((ax)^{-1}(ay))$$ for some $f \in \alpha\text{-pr}\mathcal{N}(e)$ $= (f \wedge f^{-1})(x^{-1}y)$ for some $f \in \alpha\text{-pr}\mathcal{N}(e)$ $= u(x, y)$ for all $u \in \mathcal{U}^l_{\alpha}$ and for all $x, y \in G$. Thus, the elements of \mathcal{U}_{α}^{l} are left invariant surroundings. Moreover, $(\mathcal{U}_{\alpha}^{l})_{\alpha \in L_{0}}$ is a valued L- filter base for the left L- uniform structure \mathcal{U}^{l} defined by (4.5), and hence \mathcal{U}^{l} is a left invariant L- uniform structure on G. By the same way, \mathcal{U}^{r} , defined by (4.6), is a right invariant L- uniform structure on G. Notice that: Between any two systems of sets \mathcal{A} and \mathcal{B} , we recall that \mathcal{A} is called coarser than \mathcal{B} if for any $A \in \mathcal{A}$, there is $B \in \mathcal{B}$ such that $B \subseteq A$. The following important proposition is now obtained from our last results. **Proposition 4.8** Let (G, τ) be an L-topological group. Then there exist on G a unique left invariant L- uniform structure \mathcal{U}^l and a unique right invariant L- uniform structure \mathcal{U}^r compatible with τ , constructed in Proposition 4.3 using the family $(\alpha\text{-pr}\,\mathcal{N}(e))_{\alpha\in L_0}$ of all prefilters $\alpha\text{-pr}\,\mathcal{N}(e)$, where $\mathcal{N}(e)$ is the L- neighborhood filter at the identity element e of the L-topological group (G, τ) . **Proof.** From Propositions 4.3 and 4.6, and Remark 4.2, we have \mathcal{U}^l and \mathcal{U}^r are the left and the right invariant L- uniform structures on G, respectively for which $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau$. Suppose that $(\mathcal{V}_{\alpha}^{l})_{\alpha \in L_{0}}$ is a valued L- filter base for a left invariant L- uniform structure \mathcal{V}^{l} on G such that $\tau_{\mathcal{V}^{l}} = \tau_{\mathcal{U}^{l}} = \tau$. Since for any $v_1 \in \mathcal{V}^1_{\alpha}$, there exists $v_2 \in \mathcal{V}^1_{\alpha}$ with $v_2 \leq v_1$ and $v_2(ax, ay) = v_2(x, y)$ for all $a, x, y \in G$. From (4.8), we get that $v_2[e_1](x) = v_2(e, x)$ for all $x \in G$, that is, $v_2[e_1](e) = v_2(e, e) \geq \alpha$ and there exists a left invariant surrounding $u \in \mathcal{U}^l_{\alpha}$ such that $u[e_1] \leq v_2[e_1]$. Now, $u(x,y) = u(xx^{-1}, x^{-1}y) = u(e, x^{-1}y) = u[e_1](x^{-1}y) \leq v_2[e_1](x^{-1}y)$ for all $x, y \in G$, which means that $u(x,y) = v_2(e, x^{-1}y) = v_2(x,y)$ and also we have $v_2 \leq v_1$, so $u \leq v_1$. That is, for all $\alpha \in L_0$ and for any $v_1 \in \mathcal{V}_{\alpha}^l$, there exists $u \in \mathcal{U}_{\alpha}^l$ such that $u \leq v_1$, and this means that \mathcal{V}_{α}^l is coarser than \mathcal{U}_{α}^l for all $\alpha \in L_0$. By the same way, we can show that \mathcal{U}_{α}^{l} is coarser than \mathcal{V}_{α}^{l} for all $\alpha \in L_{0}$, and thus $\mathcal{V}_{\alpha}^{l} = \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$. Hence, $\mathcal{V}^{l} = \mathcal{U}^{l}$. Similarly, one can prove that the right invariant L- uniform structure \mathcal{U}^r is unique. \square # 5. The relation between the L-topological groups and the $GT_{3\frac{1}{2}}$ -spaces In this section we shall show and prove the relation between our notion of $GT_{3\frac{1}{2}}$ spaces and the notion of *L*-topological groups defined in [1]. In [2, 3, 5] we had defined the *L*- separation axioms GT_i , $i = 0, 1, 2, 3, 3\frac{1}{2}, 4$. Here, we recall some of these axioms which we need in the following. A L- topological space (X, τ) is called ([2, 3, 5]): - (1) GT_0 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \not\leq \mathcal{N}(y)$ or $\dot{y} \not\leq \mathcal{N}(x)$. - (2) GT_1 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \not\leq \mathcal{N}(y)$ and $\dot{y} \not\leq \mathcal{N}(x)$. - (3) GT_2 if for all $x, y \in X$ with $x \neq y$ we have $\mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist. - (4) GT_3 if it is GT_1 and if for all $x \in X$ and all $F \in \tau'$ with $x \notin F$, we have $\mathcal{N}(x) \wedge \mathcal{N}(F)$ does not exist. - (5) completely regular if for all $x \notin F \in \tau'$, there exists a L- continuous mapping $f: (X, \tau) \to (I_L, \Im)$ such that $f(x) = \overline{1}$ and $f(y) = \overline{0}$ for all $y \in F$. - (6) $GT_{3\frac{1}{2}}$ (or *L-Tychonoff*) if it is GT_1 and completely regular. - (7) GT_4 if it is GT_1 and if for all $F, G \in \tau'$ with $F \cap G = \emptyset$, we have $\mathcal{N}(F) \wedge \mathcal{N}(G)$ does not exist. Denote by GT_i -space the L- topological space which is GT_i , $i = 0, 1, 2, 3, 3\frac{1}{2}, 4$. **Proposition 5.1** [2, 3, 5] Every GT_i -space is GT_{i-1} -space for each i = 1, 2, 3, 4, and $GT_{\mathcal{J}_{\frac{1}{2}}}$ -spaces fulfill the following: every GT_4 -space is a $GT_{3\frac{1}{2}}$ -space and every $GT_{3\frac{1}{2}}$ -space is a GT_3 -space. **Proposition 5.2** [6] If \mathcal{U} is a L- uniform structure on a set X and $\tau_{\mathcal{U}}$ the Ltopology associated to \mathcal{U} , then $(X, \tau_{\mathcal{U}})$ is a completely regular space. The fact that the L- topology of an L-topological group can be induced by a left or right invariant L- uniform structure leads us to our fundamental results in this section as follows. **Proposition 5.3** The L- topology of an L-topological group is completely regular. **Proof.** The proof goes directly from Propositions 4.6 and 5.2 \square **Definition 5.1** An L-topological group (G, τ) is called *separated* if for the identity element e, we have $\bigwedge_{f \in \alpha \text{-pr} \mathcal{N}(e)} f(e) \geq \alpha$, and $\bigwedge_{f \in \alpha \text{-pr} \mathcal{N}(e)} f(x) < \alpha$ for all $x \in G$ with $x \neq e$ and for all $\alpha \in L_0$. A L- uniform structure \mathcal{U} on a set X is called *separated* ([4]) if for all $x, y \in X$ with $x \neq y$ there is $u \in L^{X \times X}$ such that $\mathcal{U}(u) = 1$ and u(x, y) = 0. The space (X, \mathcal{U}) is called *separated* L- *uniform space*. **Proposition 5.4** [4] Let X be a set, \mathcal{U} a L- uniform structure on X and $\tau_{\mathcal{U}}$ the Ltopology associated with \mathcal{U} . Then (X,\mathcal{U}) is separated if and only if $(X,\tau_{\mathcal{U}})$ is GT_0 -space. In the following result we have shown the expected relation between our notion of $GT_{3\frac{1}{2}}$ -spaces and the notion of L-topological groups. **Proposition 5.5** Let (G, τ) be an L-topological group. Then the following statements are equivalent. - (1) The L- topology τ is GT_0 . - (2) The L- topology τ is GT_1 . - (3) The L- topology τ is GT_2 . - (4) The L- topology τ is $GT_{\mathcal{J}_{\frac{1}{2}}}$. - (5) \mathcal{U}^l is separated. - (6) \mathcal{U}^r is separated. - (7) The L-topological group (G, τ) is separated. #### Proof. (1) \Rightarrow (2): Let $x \neq y$ in G, then for one point (say x) there exists a τ -neighborhood f such that $\operatorname{int}_{\tau} f(x) \geq \alpha > f(y)$, which means that there is $h \in \alpha$ -pr $\mathcal{N}(e)$ such that $h = x^{-1}f$ and then $k = h \wedge h^{-1}$ is a symmetric τ -neighborhood of e, and this means that the L- set g = yk is a τ -neighborhood of y for which $\operatorname{int}_{\tau} g(y) \geq \alpha > g(x)$ because if otherwise $g(x) = yk(x) \geq \alpha$, then $$\alpha \le g^{-1}(x^{-1}) = (h \land h^{-1})y^{-1}(x^{-1}) = (x^{-1}f \land f^{-1}x)y^{-1}(x^{-1}) \le x^{-1}fy^{-1}(x^{-1}),$$ that is, $fy^{-1}(e) \geq \alpha$, and then $f(y) \geq \alpha$ which is a contradiction. Hence there exists a τ -neighborhood g of y such that $\operatorname{int}_{\tau} g(y) \geq \alpha > g(x)$, and thus (G, τ) is a GT_1 -space. - $(2) \Rightarrow (3)$: It is clear from Propositions 5.1 and 5.3. - $(3) \Rightarrow (4)$: Obvious. - $(4) \Rightarrow (5)$ and $(4) \Rightarrow (6)$: The proof comes from Proposition 4.6, and from Propositions 5.1 and 5.4. - (5) \Rightarrow (7): Since \mathcal{U}^l is separated then, by means of Propositions 4.6 and 5.4, $\tau = \tau_{\mathcal{U}^l}$ is GT_0 . Thus for any $x \neq e$ in G, there exists $f \in \alpha\text{-pr}\mathcal{N}(e)$ such that $f(x) < \alpha \leq \operatorname{int}_{\tau} f(e) \leq f(e)$. Hence, $\bigwedge_{f \in \alpha\text{-pr}\mathcal{N}(e)} f(x) \geq \alpha$ whenever x = e and $\bigwedge_{f \in \alpha\text{-pr}\mathcal{N}(e)} f(x) < \alpha$ otherwise. That is, (G, τ) is a separated L-topological group. - $(6) \Rightarrow (7)$: The proof goes similar to the case $(5) \Rightarrow (7)$. - $(7)\Rightarrow (1)$: If $x,y\in G$ with $x\neq y$, then $x^{-1}y\neq e$ and then $\bigwedge_{f\in\alpha\text{-pr}\mathcal{N}(e)}f(x^{-1}y)<\alpha$, which means that there exists $f\in\alpha\text{-pr}\mathcal{N}(e)$ such that $f(x^{-1}y)<\alpha$, that is, $xf(y)=\bigwedge_{f(z)>0}(xz)_1(y)<\alpha$, where $z=x^{-1}y$ is not allowed. Since $\{xf\mid f\in\alpha\text{-pr}\mathcal{N}(e)\}$ is itself $\alpha\text{-pr}\mathcal{N}(x)$, that is, the set of all $\alpha\text{-}L$ neighborhoods of x and $xf(y)<\alpha$. Hence, $xf(y)<\alpha\leq \operatorname{int}_{\tau}(xf)(x)$. Thus, (G,τ) is GT_0 . \square #### References - [1] T. M. G. Ahsanullah; On L-topological groups and semigroups, Ph.D Thesis, Faculty of Science, Free University of Brussels, (1984). - [2] F. Bayoumi and I. Ibedou; T_i -spaces, I, The Journal of The Egyptian Mathematical Society, Vol. $\mathbf{10}$ (2) (2002) 179 199. - [3] F. Bayoumi and I. Ibedou; T_i -spaces, II, The Journal of The Egyptian Mathematical Society, Vol. 10 (2) (2002) 201 215. - [4] F. Bayoumi and I. Ibedou; The relation between the GT_i-spaces and L- proximity spaces, G-compact spaces, L- uniform spaces, The Journal of Chaos, Solitons and Fractals, 20 (2004) 955 - 966. - [5] F. Bayoumi and I. Ibedou; $GT_{3\frac{1}{2}}$ -spaces, I, The Journal of the Egyptian Mathematical Society, Submitted. - [6] F. Bayoumi and I. Ibedou; $GT_{3\frac{1}{2}}$ -spaces, II, The Journal of the Egyptian Mathematical Society, Submitted. - [7] F. Bayoumi; On initial and final L-topological groups, Fuzzy Sets and Systems, Submitted. - [8] C. L. Chang; Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182 190. - [9] P. Eklund and W. Gähler; Fuzzy filter functors and convergence, in: Applications of Category Theory To Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht et al. (1992) 109 - 136. - [10] W. Gähler; The general L- filter approach to L- topology, I, Fuzzy Sets and Systems,76 (1995) 205 224. - [11] W. Gähler; The general L- filter approach to L- topology, II, Fuzzy Sets and Systems, 76 (1995) 225 - 246. - [12] W. Gähler, F. Bayoumi, A. Kandil and A. Nouh; The theory of global L- neighbor-hood structures. (III), Fuzzy uniform structures, Fuzzy Sets and Systems, 98 (1998) 175 199. - [13] J. A. Goguen; L-L- sets, J. Math. Anal. Appl., 18 (1967) 145 174. - [14] T. Husain; Introduction to Topological Groups, Huntington, New York 1981. - [15] R. Lowen; Convergence in L- topological spaces, General Topology and Appl. 10 (1979) 147 - 160.