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Abstract

In this paper, we show that any L-topological group (G, τ) is uniformizable. That is, we

define, using the family of prefilters which corresponds the L- neighborhood filter at the identity

element of (G, τ), unique left and right invariant L- uniform structures on G compatible with the

L- topology τ . On the other hand, on any group G, using a family of prefilters on G fulfills certain

conditions, we construct those left and right L- uniform structures which induce a L- topology τ

on G for which (G, τ) is an L-topological group and this family of prefilters coincides with the

family of prefilters corresponding to the L- neighborhood filter at the identity element of (G, τ).

Moreover, we show the relation between the L-topological groups and the GTi-spaces, such as:

the L- topology of an L-topological group (resp., a separated L-topological group) is completely

regular (resp., GT3 1
2
).

Keywords: Fuzzy filters; Fuzzy uniform spaces; Fuzzy topological groups; GTi-spaces; Completely

regular spaces; GT3 1
2
-spaces; L-Tychonoff spaces.

1. Introduction

The notion of an L-topological group (G, τ) is defined by Ahsanullah ([1]) in 1984

as an ordinary group G equipped with a L- topology τ on G such that the binary

operation and the unary operation of the inverse are L- continuous with respect to τ .
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In [1, 7], many results on the L-topological groups are studied. These L-topological

groups are called, in [1], L- topological groups.

The L- neighborhood filter at the identity element of the L-topological group

(G, τ) corresponds a family of prefilters on G ([11]). Using this family of prefilters,

we construct, in this paper, a unique left invariant L- uniform structure U l and a

unique right invariant L- uniform structure U r on G. These L- uniform structures

U l and U r are compatible with τ , that is, τU l = τUr = τ . This means that the L-

topological group (G, τ) is uniformizable. The L- uniform structures U l and U r are

L- uniform structures in sense of [12] which are defined as L- filters on the cartesian

product G×G of G with itself.

We show also here that for any group G and any family of prefilters fulfills

certain conditions , we define the left and the right L- uniform structures U l and

U r on G such that τU l = τUr is a L- topology τ on G for which the pair (G, τ) is

an L-topological group. Moreover, this family of prefilters is exactly the family of

prefilters which corresponds the L- neighborhood filter at the identity element of

the L-topological group (G, τ).

Moreover, in this paper, we study some relations between the L-topological

groups and the L- separation axioms GTi which we had introduced in [2, 3, 5].

We show that the L- topology τ of an L-topological group (G, τ) is completely reg-

ular in our sense ([5]) and that the L-topological group (G, τ) is separated if and

only if the L- topology τ is GT0 (resp. GT1, GT2, GT3 1
2
) if and only if the left L-

uniform structure U l (resp. the right L- uniform structure U r) is separated.

2. On L- filters

Let L be a complete chain with different least and greatest elements 0 and 1, respec-

tively. Let L0 = L \ {0} and L1 = L \ {1}. Denote by LX the set of all L- subsets

of a non-empty set X.
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By a L- filter on X ([9, 10]) is meant a mapping M : LX → L such that

M(α) ≤ α holds for all α ∈ L and M(1) = 1, and also M(f ∧ g) = M(f) ∧M(g)

for all f, g ∈ LX . A L- filter M is called homogeneous if M(α) = α for all α ∈ L. If

M and N are L- filters on X, M is said to be finer than N , denoted by, M≤ N ,

provided M(f) ≥ N (f) holds for all f ∈ LX . By M 6≤ N we denote that M is not

finer than N .

For any set A of L- filters on X, the infimum
∧

M∈A
M, with respect to the

finer relation on L- filters, does not exist in general. The infimum
∧

M∈A
M of A

exists if and only if for each non-empty finite subset {M1, . . . ,Mn} of A we have

M1(f1) ∧ · · · ∧ Mn(fn) ≤ sup(f1 ∧ · · · ∧ fn) for all f1, . . . , fn ∈ LX ([9]). If the

infimum of A exists, then for each f ∈ LX and n as a positive integer we have

(
∧

M∈A

M)(f) =
∨

f1∧···∧fn≤f,
M1,...,Mn∈A

(M1(f1) ∧ · · · ∧Mn(fn)).

A prefilter on X is a non-empty subset F of LX which does not contain 0 and

closed under finite infima and super sets ([15]). For each L- filter M on X, the

subset α-prM of LX defined by:

α-prM = {f ∈ LX | M(f) ≥ α}

is a prefilter on X.

A valued L- filter base on a set X ([10]) is a family (Bα)α∈L0 of non-empty subsets

of LX such that the following conditions are fulfilled:

(V1) f ∈ Bα implies α ≤ supf .

(V2) For all α, β ∈ L0 and all mappings f ∈ Bα and g ∈ Bβ, if even α∧β > 0 holds,

then there are a γ ≥ α ∧ β and a L- set h ≤ f ∧ g such that h ∈ Bγ.

Each valued L- filter base (Bα)α∈L0 on a set X defines a L- filter M on X by

M(f) =
∨

g∈Bα, g≤f
α for all f ∈ LX . On the other hand, each L- filter M can
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be generated by many valued L- filter bases, and among them the greatest one

(α-prM)α∈L0 .

Proposition 2.1 [10] There is a one-to-one correspondence between the L- filters

M on X and the families (Mα)α∈L0 of prefilters on X which fulfill the following

conditions:

(1) f ∈Mα implies α ≤ supf .

(2) 0 < α ≤ β implies Mα ⊇Mβ.

(3) For each α ∈ L0 with
∨

0<β<α
β = α we have

⋂
0<β<α

Mβ = Mα.

This correspondence is given by Mα = α-prM for all α ∈ L0 and M(f) =
∨

g∈Mα, g≤f
α for all f ∈ LX .

Fuzzy neighborhood filters. In the following the L- topology τ on a set X

in sense of ([8, 13]) will be used. intτ and clτ denote the interior and the closure

operators with respect to τ , respectively. For each L- topological space (X, τ) and

each x ∈ X the mapping N (x) : LX → L defined by

N (x)(f) = intτf(x)

for all f ∈ LX is a L- filter on X, called the L- neighborhood filter of the space

(X, τ) at x ([11]).

f ∈ LX is called a τ -neighborhood at x ∈ X provided α ≤ intτf(x) for some

α ∈ L0. That is, f is a τ -neighborhood at x if f ∈ α-prN (x) for some α ∈ L0.

Let (X, τ) and (Y, σ) be two L- topological spaces. Then the mapping f :

(X, τ) → (Y, σ) is called L- continuous (or (τ, σ)-continuous) provided

intσg ◦ f ≤ intτ (g ◦ f) for all g ∈ LY .
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3. L-topological groups

In the following we focus our study on a multiplicative group G. We denote, as

usual, the identity element of G by e and the inverse of an element a of G by a−1.

Let π : G×G → G be a mapping defined by

π(a, b) = ab for all a, b ∈ G,

and i : G → G a mapping defined by

i(a) = a−1 for all a ∈ G,

that is, π and i are the binary operation and the unary operation of the inverse on

G, respectively.

Here, we define the product of f, g ∈ LG with respect to the binary operation π

on G as the L- set fg in G defined by:

fg =
∧

f(x)>0, g(y)>0

(xy)1. (3.1)

In particular, for all a ∈ G and all f ∈ LG, we have af ∈ LG defined by

af =
∧

f(x)>0

(ax)1 (3.2)

and fa ∈ LG defined by

fa =
∧

f(x)>0

(xa)1 (3.3)

Also, we can define the inverse of f ∈ LG with respect to the unary operation i

on G as the L- set f−1 on G by:

f−1(x) = f(x−1) for all x ∈ G. (3.4)

The following definitions are similar to those in [14].
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Definition 3.1 Let τ be a L- topology on a group G. The mapping π : (G ×
G, τ × τ) → (G, τ) is called (τ × τ, τ)-continuous in each variable separately if for

all f ∈ α-prN (ab), there exists g ∈ α-prN (b) such that ag ≤ f or there exists

h ∈ α-prN (a) such that hb ≤ f for some α ∈ L0 and for all a, b ∈ G.

Definition 3.2 Let G be a group and τ be a L- topology on G. Then the pair (G, τ)

will be called a semi – L-topological group if the mapping π is (τ × τ, τ)-continuous

in each variable separately.

Definition 3.3 The mapping π is called (τ × τ, τ)-continuous everywhere if for all

f ∈ α-prN (ab), there exist g ∈ α-prN (a) and h ∈ α-prN (b) such that gh ≤ f for

some α ∈ L0 and for all a, b ∈ G.

Definition 3.4 The mapping i is called (τ, τ)-continuous if for all f ∈ α-prN (a−1),

there exists an g ∈ α-prN (a) such that g−1 ≤ f for some α ∈ L0 and for all a ∈ G.

Definition 3.5 [1] Let G be a group and τ be a L- topology on G. Then the pair

(G, τ) will be called an L-topological group if the mapping π is (τ × τ, τ)-continuous

everywhere and the mapping i is (τ, τ)-continuous.

Clearly, every L-topological group is a semi – L-topological group.

Proposition 3.1 The pair (G, τ) is an L-topological group if and only if for all

f ∈ α-prN (a−1b), there exist g ∈ α-prN (a) and h ∈ α-prN (b) such that g−1h ≤ f

for some α ∈ L0 and for all a, b ∈ G.

Proof. Obvious. 2

Let us call a L- set f ∈ LG symmetric if the inverse f−1, defined by (3.4), fulfills

that f = f−1.

For each group G and a ∈ G, the left and right translations are the homomor-

phisms la : G → G defined by la(x) = ax and Ra : G → G defined by Ra(x) = xa
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for each x ∈ G, respectively. The left and right translations in L-topological groups

fulfill the following result.

Proposition 3.2 [7] Let (G, τ) be an L-topological group. Then for each a ∈ G the

left and right translations la and Ra are L-homeomorphisms.

We shall use the following result.

Lemma 3.1 Let f be an open L- set in an L-topological group (G, τ). Then for any

x0 ∈ G the L- sets fx0 and x0f are also open.

Proof. Consider the mapping

h : G → G×G, x 7→ (x−1
0 , x)

and the projection mappings

p1 : G×G → G, (x1, x2) 7→ x1

and

p2 : G×G → G, (x1, x2) 7→ x2.

Then (p1 ◦ h)(x) = x−1
0 and (p2 ◦ h)(x) = x. Since (p1 ◦ h) and (p2 ◦ h) are (τ, τ)-

continuous, then h is also (τ, τ × τ)-continuous. Now, we have

π : G×G → G, (x1, x2) 7→ x1x2

is (τ×τ, τ)-continuous, and thus the mapping λ = π◦h, for which λ(x) = π(h(x)) =

π(x−1
0 , x) = x−1

0 x for all x ∈ G, is (τ, τ)-continuous. Also, λ−1(x−1
0 x) = x for all

x ∈ G, that is, λ−1(x) = x0x for all x ∈ G. In particular, x0f = λ−1(f) is a L- open

set in (G, τ). fx0 is also open with a similar proof. 2

Recall that: If f : X → Y is a mapping between the non-empty sets X and

Y and h ∈ LY , then the preimage f−1(h) of h with respect to f is defined by

f−1(h) = h ◦ f .

Now, we prove the following result.
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Lemma 3.2 Let (G, τ) be an L-topological group and x0 ∈ G. Then

f ∈ α -prN (e) if and only if x0f ∈ α-prN (x0) if and only if fx0 ∈ α-prN (x0).

Proof. Since the mapping λ = π ◦ h, as in Lemma 3.1, is (τ, τ)-continuous, then

intτg ◦ λ ≤ intτ (g ◦ λ) for all g ∈ LG. That is,

intτf(x−1
0 x) = intτf(λ(x)) ≤ intτ (f ◦ λ)(x) = intτ (λ

−1(f))(x) = intτ (x0f)(x)

for all x ∈ G and all f ∈ LG. Hence, f ∈ α-prN (e) if and only if x0f ∈ α-prN (x0).

The other case is similar and the proof is then complete. 2

4. L-topological groups and their canonical L- uniform struc-

tures

In the sequel we show that for each L-topological group (G, τ), there are unique left

and right invariant L- uniform structures on G compatible with τ .

For a family (Vα)α∈L0 of subsets Vα of LX , consider the following conditions:

(e1) For all α ∈ L0, if 0 < β ≤ α, then Vα ⊆ Vβ,

(e2) For all α ∈ L0 with
∨

0<β<α
β = α, we have Vα =

⋂
0<β<α

Vβ,

(e3) For all α ∈ L0 and all f ∈ Vα, we have α ≤ supf ,

(e4) For all α ∈ L0 and all f ∈ Vα, there exists g ∈ Vα such that g−1 ≤ f ,

(e5) For all α ∈ L0 and all f ∈ Vα, there exists g ∈ Vα such that gg ≤ f .

Proposition 4.1 Let N (e) be the L- neighborhood filter at the identity element

e of an L-topological group (G, τ). Then the family (α-prN (e))α∈L0 of prefilters

α-prN (e) fulfills the conditions (e1) - (e5).
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Proof. Since 0 < β ≤ α and f ∈ α-prN (e) imply that β ≤ α ≤ intτf(e), then

f ∈ β-prN (e). Hence, α-prN (e) ⊆ β-prN (e), and (e1) is fulfilled.

From (e1), we get that α-prN (e) ⊆ ⋂
0<β<α

β-prN (e). Now, if f ∈ ⋂
0<β<α

β-prN (e),

then f ∈ β-prN (e) for all β ∈ L0 with α =
∨

0<β<α
β, which means that f ∈ α-prN (e)

and hence (e2) holds.

(e3) is evident.

Since i(e) = e−1 = e and i is (τ, τ)-continuous, then (e4) is fulfilled.

since π(e, e) = ee = e and π is (τ × τ, τ)-continuous everywhere, then (e5) is

fulfilled. 2

Fuzzy uniform structures. Let U be a L- filter on X ×X. The inverse U−1

of U is a L- filter on X ×X defined by U−1(u) = U(u−1) for all u ∈ LX×X , where

u−1 is the inverse of u defined by: u−1(x, y) = u(y, x) for all x, y ∈ X. Let, each

α ∈ L, α̃ denote the constant mapping : X ×X → L defined by α̃(x, y) = α for all

x, y ∈ X ([12]).

For each pair (x, y) of elements x, y of X, the mapping (x, y)
.

: LX×X → L

defined by (x, y)
.
(u) = u(x, y) for all u ∈ LX×X is a homogeneous L- filter on

X ×X. Let U and V be L- filters on X ×X such that (x, y)
. ≤ U and (y, z)

. ≤ V
hold for some x, y, z ∈ X. Then the composition V ◦ U of U and V is ([12]) the L-

filter on X ×X defined by

(V ◦ U)(w) =
∨

v◦u≤w

(U(u) ∧ V(v)) (4.1)

for all w ∈ LX×X , where u, v, v ◦ u ∈ LX×X and

(v ◦ u)(x, y) =
∨

z∈X

( u(x, z) ∧ v(z, y)) (4.2)

for all x, y ∈ X.

By a L- uniform structure U on a set X ([12]) we mean a L- filter on X × X

such that:
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(U1) (x, x)
. ≤ U for all x ∈ X.

(U2) U = U−1.

(U3) U ◦ U ≤ U .

A set X equipped with a L- uniform structure U is called a L- uniform space.

For any complete chain we have the following result.

Lemma 4.1 The supremum of two L- uniform structures is a L- uniform structure.

Proof. Clear. 2

Proposition 4.2 [12] There is a one - to - one correspondence between the L-

uniform structures U on X and the families (Uα)α∈L0 of prefilters on X ×X which

fulfill the following conditions:

(u1) 0 < β ≤ α implies Uα ⊆ Uβ.

(u2) For each α ∈ L0 with
∨

0<β<α
β = α, we have Uα =

⋂
0<β<α

Uβ.

(u3) For all α ∈ L0, u ∈ Uα and x ∈ X, we have α ≤ u(x, x).

(u4) u ∈ Uα implies u−1 ∈ Uα for all α ∈ L0.

(u5) For each α ∈ L0 and each u ∈ Uα, we have α ≤ ∨
v∈Uβ , v◦v≤u

β.

This correspondence is given by Uα = α-prU for all α ∈ L0 and U(u) =
∨

v∈Uα, v≤u
α

for all u ∈ LX×X .

Now we shall prove the following important results in which those conditions

(e1) - (e5) for the family (α-prN (e))α∈L0 are necessary to construct L- uniform

structures by which the L-topological group (G, τ) is uniformizable.

First, we construct these L- uniform structures and then, in another proposition,

we show that (G, τ) is uniformizable.
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Proposition 4.3 Let (G, τ) be an L-topological group. Then the families (U l
α)α∈L0

and (U r
α)α∈L0 of the subsets U l

α and U r
α of LG×G defined by

U l
α = {u ∈ LG×G | u(x, y) = (f ∧ f−1)(x−1y) for some f ∈ α-prN (e)} (4.3)

and

U r
α = {u ∈ LG×G | u(x, y) = (f ∧ f−1)(xy−1) for some f ∈ α-prN (e)} (4.4)

correspond L- uniform structures U l and U r on G, respectively by the following:

U l
α = α-prU l and U l(u) =

∨

v∈U l
α, v≤u

α (4.5)

and

U r
α = α-prU r and U r(u) =

∨

v∈Ur
α, v≤u

α. (4.6)

Proof. Since 0̃(x, x) = 0 6= 1 = (f ∧f−1)(e) = (f ∧f−1)(x−1x) for all f ∈ α-prN (e)

and all x ∈ G, then 0̃ 6∈ U l
α for all α ∈ L0.

Also, 1̃ ∈ U l
α for all α ∈ L0, from that there exists a symmetric L- set f = e1 =

(x−1yy−1x)1 = (x−1y)1(y
−1x)1 ∈ α-prN (e) such that (f ∧ f−1)(x−1y) = f(x−1y) ∧

f(y−1x) = 1 for all x, y ∈ G.

Let u ∈ U l
α for all α ∈ L0 and v ≥ u. Then v(x, y) ≥ (f ∧ f−1)(x−1y) for

some f ∈ α-prN (e) and for all x, y ∈ G. But v ≤ 1̃ ∈ U l
α implies that there is

g ∈ α-prN (e) such that v(x, y) ≤ (g ∧ g−1)(x−1y) for all x, y ∈ G. That is, there

is some h ∈ α-prN (e) such that v(x, y) = (h ∧ h−1)(x−1y) for all x, y ∈ G. Hence

v ∈ U l
α for all α ∈ L0.

Since (f ∧ g) ∈ α-prN (e) whenever f ∈ α-prN (e) and g ∈ α-prN (e), then for

any u, v ∈ U l
α, we get that

(u ∧ v)(x, y) = u(x, y) ∧ v(x, y)

= (f ∧ f−1)(x−1y) ∧ (g ∧ g−1)(x−1y) for some f, g ∈ α-prN (e)

= ((f ∧ g) ∧ (f ∧ g)−1)(x−1y) for some f, g ∈ α-prN (e).
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Hence (u ∧ v) ∈ U l
α for all α ∈ L0. Thus U l

α is a prefilter on G×G for all α ∈ L0.

Now, let 0 < β ≤ α and u ∈ U l
α. Then from (e1) for the family (α-prN (e))α∈L0 ,

we get that u(x, y) = (g ∧ g−1)(x−1y) for some g ∈ β-prN (e) for all x, y ∈ G, and

then u ∈ U l
β. Hence, the condition (u1) of Proposition 4.2 holds.

From (u1) of Proposition 4.2 and from (e2) for (α-prN (e))α∈L0 , we get that (u2)

of Proposition 4.2 is fulfilled.

From (e3) and (e4) for (α-prN (e))α∈L0 , we have for all α ∈ L0 and all u ∈ U l
α

that

u(x, x) = (f ∧ f−1)(x−1x) = (f ∧ f−1)(e) ≥ α

for some f ∈ α-prN (e). Hence, (u3) of Proposition 4.2 holds.

For all α ∈ L0 and all u ∈ U l
α, we have for all x, y ∈ G that

u−1(x, y) = u(y, x) = (f ∧ f−1)(y−1x)

for some f ∈ α-prN (e). Since (3.4) implies, for all x, y ∈ G, that

(f ∧ f−1)(x−1y) = f(x−1y) ∧ f−1(x−1y) = f−1(y−1x) ∧ f(y−1x) = (f ∧ f−1)(y−1x),

that is, u(x, y) = u(y, x) for all x, y ∈ G, then u ∈ U l
α if and only if u−1 ∈ U l

α and

thus (u4) of Proposition 4.2 holds.

From (e5) for (α-prN (e))α∈L0 , we have for all α ∈ L0 and all f ∈ α-prN (e)

that there exists g ∈ β-prN (e), β ∈ L0, such that gg ≤ f . For any u ∈ U l
α and all

x, y ∈ G, we have u(x, y) = (f ∧ f−1)(x−1y) for some f ∈ α-prN (e), which means

that there exists v ∈ U l
β, β ∈ L0, such that (4.2) implies for all x, y ∈ G that:

(v ◦ v)(x, y) =
∨

z∈G

(v(x, z) ∧ v(z, y))

=
∨

z∈G

((g ∧ g−1)(x−1z) ∧ (g ∧ g−1)(z−1y))

≤ (f ∧ f−1)(x−1y)

= u(x, y).
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Hence, by means of (e5) for (α-prN (e))α∈L0 , we get

α ≤ ∨

v∈U l
β
, (v◦v)≤u

β =
∨

g∈β-prN (e), gg≤f

β

and then (u5) of Proposition 4.2 holds.

Now, we have the family (U l
α)α∈L0 is a family of prefilters on G × G and fulfills

the conditions (u1) - (u5). From Proposition 4.2, we get that (U l
α)α∈L0 corresponds

a L- uniform structure U l on G. This correspondence is given by

U l(u) =
∨

v∈U l
α, v≤u

α and U l
α = α-prU l.

The same proof can be done with the family (U r
α)α∈L0 . 2

Definition 4.1 U l and U r defined by (4.5) and (4.6) are called left L- uniform

structure and right L- uniform structure on G, respectively.

An L-topological group (G, τ) is called abelian if the group G is abelian.

Proposition 4.4 For abelian L-topological groups, the left and the right L- uniform

structures coincide.

Proof. Since

(f ∧ f−1)(x−1y) = (f ∧ f−1)(y−1x) = (f ∧ f−1)(xy−1)

for all x, y ∈ G and for some f ∈ α-prN (e), then U l
α = U r

α for all α ∈ L0. Therefore,

U l = U r. 2

Let U be a L- filter on X ×X such that (x, x)
. ≤ U holds for all x ∈ X, and let

M be a L- filter on X. Then the mapping U [M] : LX → L, defined by

U [M](f) =
∨

u[g]≤f

(U(u) ∧M(g)) (4.7)
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for all f ∈ LX , is a L- filter on X, called the image of M with respect to U ([12]),

where u ∈ LX×X and g, u[g] ∈ LX such that:

u[g](x) =
∨

y∈X

(g(y) ∧ u(y, x)). (4.8)

Proposition 4.5 [12] Let U be a L- filter on X×X such that (x, x)
. ≤ U holds for

all x ∈ X, and let M be a L- filter on X. Then the family (Lα)α∈L0 with

Lα = { f ∈ LX | u[g] ≤ f for some u ∈ α-prU and g ∈ α-prM}

is a valued L- filter base of U [M], which consists of prefilters on X such that α ≤ β

implies Lα ⊇ Lβ for all α, β ∈ L0.

Remark 4.1 From Proposition 4.5, we get for a L- uniform structure U on X and

a homogeneous L- filter ẋ at x ∈ X, that the family (Lα)α∈L0 with

Lα = { f ∈ LX | u[g] ≤ f for some u ∈ α-prU and α ≤ g(x)} (4.9)

is a valued L- filter base of U [ẋ], and moreover Lα = α-prU [ẋ] for all α ∈ L0.

To each L- uniform structure U on X is associated a stratified L- topology τU .

The related interior operator intU is given by ([12]):

(intUf)(x) = U [ẋ](f) (4.10)

for all x ∈ X, f ∈ LX . A L- set f ∈ LX is called a τU -neighborhood of x ∈ X

provided α ≤ intUf(x) for some α ∈ L0.

In the following proposition, we show that every L-topological group is uniformiz-

able.

Proposition 4.6 Any L-topological group (G, τ) is uniformizable. That is, τU l =

τUr = τ(U l∨Ur) = τ .

14



Proof. From Lemma 4.1 and Proposition 4.3, we get that both of U l, U r and U l∨U r

are L- uniform structures on G.

Since for all x ∈ G and all f ∈ LG we have, from (4.7), (4.10) and Remark 4.1,

that:

intU lf(x) = U l[ẋ](f) =
∨

u[g]≤f

(U l(u) ∧ g(x)) = 1

is equivalent to

intUrf(x) = U r[ẋ](f) =
∨

u[g]≤f

(U r(u) ∧ g(x)) = 1

equivalent to

int(U l∨Ur)f(x) = (U l ∨ U r)[ẋ](f) =
∨

u[g]≤f

((U l ∨ U r)(u) ∧ g(x)) = 1,

which means that f is a τU l-neighborhood of an element x if and only if it is a

τUr -neighborhood of x if and only if it is a τ(U l∨Ur)-neighborhood of x. Hence,

τU l = τUr = τ(U l∨Ur).

From (4.7) and (4.8), and also from Remark 4.1, we have

U l[ẋ](f) =
∨

g∈α-prU l[ẋ], g≤f

α

=
∨

u[g]≤f

(U l(u) ∧ g(x))

=
∨

h∈α-prN (x), h≤f

α

= N (x)(f)

for all x ∈ G and all f ∈ LG. Hence, the L- neighborhood filter U l[ẋ] of (G, τU l)

at every x ∈ G is identical with the L- neighborhood filter N (x) at every x in the

L-topological group (G, τ). Thus, τU l = τ , and therefore (G, τ) is uniformizable. 2

In the following we show that these conditions (e1) - (e5) for a family of prefilters

on G are also sufficient to construct from the group G an L-topological group.

15



Proposition 4.7 Let G be a group and e the identity element of G, and let (Ve
α)α∈L0

be a family of prefilters on G fulfilling conditions (e1) - (e5). Defining, for each

α ∈ L0, the subsets

U l
α = {u ∈ LG×G | u(x, y) = (f ∧ f−1)(x−1y) for some f ∈ Ve

α}

and

U r
α = {u ∈ LG×G | u(x, y) = (f ∧ f−1)(xy−1) for some f ∈ Ve

α}

of LG×G. Hence, we have the left and the right L- uniform structures U l and U r

on G defined by (4.5) and (4.6), respectively. Moreover, τU l = τUr = τ(U l∨Ur) is a

L- topology τ on G for which the pair (G, τ) is an L-topological group. Finally, for

each α ∈ L0, we have Ve
α = α-prN (e), where N (e) is the L- neighborhood filter at e

with respect to the L- topology τ on G.

Proof. As in Propositions 4.3 and 4.6, we get that U l and U r are the left and the

right L- uniform structures on G for which τU l = τUr = τ(U l∨Ur) is a L- topology on

the group G. Denote τU l = τUr = τ(U l∨Ur) by τ .

It remains to prove that (G, τ) is an L-topological group and that Ve
α = α-prN (e)

for all α ∈ L0.

Now, from that the conditions of Proposition 2.1 are equivalent to the conditions

(e1) - (e3), we get that

Ve
α = α-prU l[ė] = α-prU r[ė] = α-pr (U l ∨ U r)[ė]

for all α ∈ L0. That is, Ve
α = α-prN (e) for all α ∈ L0, where N (e) is the L-

neighborhood filter of (G, τ) at e.

From conditions (e4) and (e5) of the prefilters α-prN (e) for all α ∈ L0, we get

that for all f ∈ α-prN (e), there exist g, h ∈ α-prN (e) for some α ∈ L0 such that

g−1h ≤ f , which means that

(ga)−1(hb) = a−1(g−1h)b ≤ a−1fb.
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That is, from Lemma 3.2, we get that for all λ = a−1fb ∈ α-prN (a−1b), there exist

µ = ga ∈ α-prN (a) and ν = hb ∈ α-prN (b) such that µ−1ν ≤ λ. Hence, (G, τ) is

an L-topological group. 2

Let us define the following.

Definition 4.2 Let U be a L- uniform structure on a set X. Then

(1) u ∈ LX×X is called a surrounding provided U(u) ≥ α for some α ∈ L0 and

u = u−1,

(2) A surrounding u ∈ LX×X is called left (right) invariant provided

u(ax, ay) = u(x, y) (u(xa, ya) = u(x, y)) for all a, x, y ∈ X,

(3) U is called a left (right) invariant L- uniform structure if U has a valued L-

filter base consists of left (right) invariant surroundings.

Now, from Proposition 4.3, we have this remark.

Remark 4.2 In the L-topological group (G, τ), for each element u in U l
α, defined

by (4.3), we have U l
α(u) ≥ α for some α ∈ L0 and also, for all x, y ∈ G and each

u ∈ U l
α, we have

u(x, y) = (f ∧ f−1)(x−1y) for some f ∈ α-prN (e)

= (f ∧ f−1)(y−1x) for some f ∈ α-prN (e)

= u(y, x)

= u−1(x, y).

That is, U l
α is a prefilter of surroundings. Also, for all a, x, y ∈ G, we have

u(ax, ay) = (f ∧ f−1)((ax)−1(ay)) for some f ∈ α-prN (e)

= (f ∧ f−1)(x−1y) for some f ∈ α-prN (e)

= u(x, y) for all u ∈ U l
α and for all x, y ∈ G.
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Thus, the elements of U l
α are left invariant surroundings. Moreover, (U l

α)α∈L0 is a

valued L- filter base for the left L- uniform structure U l defined by (4.5), and hence

U l is a left invariant L- uniform structure on G. By the same way, U r, defined by

(4.6), is a right invariant L- uniform structure on G.

Notice that: Between any two systems of sets A and B, we recall that A is called

coarser than B if for any A ∈ A, there is B ∈ B such that B ⊆ A.

The following important proposition is now obtained from our last results.

Proposition 4.8 Let (G, τ) be an L-topological group. Then there exist on G a

unique left invariant L- uniform structure U l and a unique right invariant L- uni-

form structure U r compatible with τ , constructed in Proposition 4.3 using the family

(α-prN (e))α∈L0 of all prefilters α-prN (e), where N (e) is the L- neighborhood filter

at the identity element e of the L-topological group (G, τ).

Proof. From Propositions 4.3 and 4.6, and Remark 4.2, we have U l and U r are

the left and the right invariant L- uniform structures on G, respectively for which

τU l = τUr = τ .

Suppose that (V l
α)α∈L0 is a valued L- filter base for a left invariant L- uniform

structure V l on G such that τVl = τU l = τ .

Since for any v1 ∈ V1
α, there exists v2 ∈ V1

α with v2 ≤ v1 and v2(ax, ay) = v2(x, y)

for all a, x, y ∈ G. From (4.8), we get that v2[e1](x) = v2(e, x) for all x ∈ G, that

is, v2[e1](e) = v2(e, e) ≥ α and there exists a left invariant surrounding u ∈ U l
α such

that u[e1] ≤ v2[e1].

Now, u(x, y) = u(xx−1, x−1y) = u(e, x−1y) = u[e1](x
−1y) ≤ v2[e1](x

−1y) for

all x, y ∈ G, which means that u(x, y) = v2(e, x
−1y) = v2(x, y) and also we have

v2 ≤ v1, so u ≤ v1. That is, for all α ∈ L0 and for any v1 ∈ V l
α, there exists u ∈ U l

α

such that u ≤ v1, and this means that V l
α is coarser than U l

α for all α ∈ L0. By the
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same way, we can show that U l
α is coarser than V l

α for all α ∈ L0, and thus V l
α = U l

α

for all α ∈ L0. Hence, V l = U l.

Similarly, one can prove that the right invariant L- uniform structure U r is

unique. 2

5. The relation between the L-topological groups and the

GT31
2
-spaces

In this section we shall show and prove the relation between our notion of GT3 1
2
-

spaces and the notion of L-topological groups defined in [1].

In [2, 3, 5] we had defined the L- separation axioms GTi, i = 0, 1, 2, 3, 31
2
, 4.

Here, we recall some of these axioms which we need in the following.

A L- topological space (X, τ) is called ([2, 3, 5]):

(1) GT0 if for all x, y ∈ X with x 6= y we have ẋ 6≤ N (y) or ẏ 6≤ N (x).

(2) GT1 if for all x, y ∈ X with x 6= y we have ẋ 6≤ N (y) and ẏ 6≤ N (x).

(3) GT2 if for all x, y ∈ X with x 6= y we have N (x) ∧N (y) does not exist.

(4) GT3 if it is GT1 and if for all x ∈ X and all F ∈ τ ′ with x 6∈ F , we have

N (x) ∧N (F ) does not exist.

(5) completely regular if for all x 6∈ F ∈ τ ′, there exists a L- continuous mapping

f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all y ∈ F .

(6) GT3 1
2

( or L-Tychonoff ) if it is GT1 and completely regular.

(7) GT4 if it is GT1 and if for all F, G ∈ τ ′ with F ∩G = ∅, we have N (F )∧N (G)

does not exist.

Denote by GTi-space the L- topological space which is GTi, i = 0, 1, 2, 3, 31
2
, 4.
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Proposition 5.1 [2, 3, 5] Every GTi-space is GTi−1-space for each i = 1, 2, 3, 4,

and GT3 1
2
-spaces fulfill the following:

every GT4-space is a GT3 1
2
-space and every GT3 1

2
-space is a GT3-space.

Proposition 5.2 [6] If U is a L- uniform structure on a set X and τU the L-

topology associated to U , then (X, τU) is a completely regular space.

The fact that the L- topology of an L-topological group can be induced by a left

or right invariant L- uniform structure leads us to our fundamental results in this

section as follows.

Proposition 5.3 The L- topology of an L-topological group is completely regular.

Proof. The proof goes directly from Propositions 4.6 and 5.2 2

Definition 5.1 An L-topological group (G, τ) is called separated if for the identity

element e, we have
∧

f∈α-prN (e)
f(e) ≥ α, and

∧
f∈α-prN (e)

f(x) < α for all x ∈ G with

x 6= e and for all α ∈ L0.

A L- uniform structure U on a set X is called separated ([4]) if for all x, y ∈ X

with x 6= y there is u ∈ LX×X such that U(u) = 1 and u(x, y) = 0. The space (X,U)

is called separated L- uniform space.

Proposition 5.4 [4] Let X be a set, U a L- uniform structure on X and τU the L-

topology associated with U . Then

(X,U) is separated if and only if (X, τU) is GT0-space.

In the following result we have shown the expected relation between our notion

of GT3 1
2
-spaces and the notion of L-topological groups.
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Proposition 5.5 Let (G, τ) be an L-topological group. Then the following state-

ments are equivalent.

(1) The L- topology τ is GT0.

(2) The L- topology τ is GT1.

(3) The L- topology τ is GT2.

(4) The L- topology τ is GT3 1
2
.

(5) U l is separated.

(6) U r is separated.

(7) The L-topological group (G, τ) is separated.

Proof.

(1) ⇒ (2): Let x 6= y in G, then for one point (say x) there exists a τ -

neighborhood f such that intτf(x) ≥ α > f(y), which means that there is h ∈
α-prN (e) such that h = x−1f and then k = h∧ h−1 is a symmetric τ -neighborhood

of e, and this means that the L- set g = yk is a τ -neighborhood of y for which

intτg(y) ≥ α > g(x) because if otherwise g(x) = yk(x) ≥ α, then

α ≤ g−1(x−1) = (h ∧ h−1)y−1 (x−1) = (x−1f ∧ f−1x)y−1 (x−1) ≤ x−1fy−1 (x−1),

that is, fy−1(e) ≥ α, and then f(y) ≥ α which is a contradiction. Hence there

exists a τ -neighborhood g of y such that intτg(y) ≥ α > g(x), and thus (G, τ) is a

GT1-space.

(2) ⇒ (3): It is clear from Propositions 5.1 and 5.3.

(3) ⇒ (4): Obvious.

(4) ⇒ (5) and (4) ⇒ (6): The proof comes from Proposition 4.6, and from

Propositions 5.1 and 5.4.
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(5) ⇒ (7): Since U l is separated then, by means of Propositions 4.6 and 5.4,

τ = τU l is GT0. Thus for any x 6= e in G, there exists f ∈ α-prN (e) such that

f(x) < α ≤ intτf(e) ≤ f(e). Hence,
∧

f∈α-prN (e)
f(x) ≥ α whenever x = e and

∧
f∈α-prN (e)

f(x) < α otherwise. That is, (G, τ) is a separated L-topological group.

(6) ⇒ (7): The proof goes similar to the case (5) ⇒ (7).

(7) ⇒ (1): If x, y ∈ G with x 6= y, then x−1y 6= e and then
∧

f∈α-prN (e)
f(x−1y) <

α, which means that there exists f ∈ α-prN (e) such that f(x−1y) < α, that is,

xf (y) =
∧

f(z)>0
(xz)1 (y) < α, where z = x−1y is not allowed. Since {xf | f ∈

α-prN (e)} is itself α-prN (x), that is, the set of all α-L- neighborhoods of x and

xf (y) < α. Hence, xf (y) < α ≤ intτ (xf) (x). Thus, (G, τ) is GT0. 2
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