The uniformizability of L-topological groups

Fatma Bayoumi

Department of Mathematics, Faculty of Sciences, Benha University, Benha, P. O. 13518, Egypt

Ismail Ibedou

Department of Mathematics, Faculty of Sciences, Benha University, Benha, P. O. 13518, Egypt

Abstract

In this paper, we show that any L-topological group (G,τ) is uniformizable. That is, we define, using the family of prefilters which corresponds the L- neighborhood filter at the identity element of (G,τ) , unique left and right invariant L- uniform structures on G compatible with the L- topology τ . On the other hand, on any group G, using a family of prefilters on G fulfills certain conditions, we construct those left and right L- uniform structures which induce a L- topology τ on G for which (G,τ) is an L-topological group and this family of prefilters coincides with the family of prefilters corresponding to the L- neighborhood filter at the identity element of (G,τ) . Moreover, we show the relation between the L-topological groups and the GT_i -spaces, such as: the L- topology of an L-topological group (resp., a separated L-topological group) is completely regular (resp., $GT_{3\frac{1}{2}}$).

Keywords: Fuzzy filters; Fuzzy uniform spaces; Fuzzy topological groups; GT_i -spaces; Completely regular spaces; $GT_{3\frac{1}{2}}$ -spaces; L-Tychonoff spaces.

1. Introduction

The notion of an L-topological group (G, τ) is defined by Ahsanullah ([1]) in 1984 as an ordinary group G equipped with a L- topology τ on G such that the binary operation and the unary operation of the inverse are L- continuous with respect to τ .

In [1, 7], many results on the L-topological groups are studied. These L-topological groups are called, in [1], L- topological groups.

The L- neighborhood filter at the identity element of the L-topological group (G,τ) corresponds a family of prefilters on G ([11]). Using this family of prefilters, we construct, in this paper, a unique left invariant L- uniform structure \mathcal{U}^l and a unique right invariant L- uniform structure \mathcal{U}^r on G. These L- uniform structures \mathcal{U}^l and \mathcal{U}^r are compatible with τ , that is, $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau$. This means that the L-topological group (G,τ) is uniformizable. The L- uniform structures \mathcal{U}^l and \mathcal{U}^r are L- uniform structures in sense of [12] which are defined as L- filters on the cartesian product $G \times G$ of G with itself.

We show also here that for any group G and any family of prefilters fulfills certain conditions, we define the left and the right L- uniform structures \mathcal{U}^l and \mathcal{U}^r on G such that $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r}$ is a L- topology τ on G for which the pair (G, τ) is an L-topological group. Moreover, this family of prefilters is exactly the family of prefilters which corresponds the L- neighborhood filter at the identity element of the L-topological group (G, τ) .

Moreover, in this paper, we study some relations between the L-topological groups and the L- separation axioms GT_i which we had introduced in [2, 3, 5]. We show that the L- topology τ of an L-topological group (G, τ) is completely regular in our sense ([5]) and that the L-topological group (G, τ) is separated if and only if the L- topology τ is GT_0 (resp. GT_1 , GT_2 , $GT_{3\frac{1}{2}}$) if and only if the left L- uniform structure \mathcal{U}^l (resp. the right L- uniform structure \mathcal{U}^r) is separated.

2. On L- filters

Let L be a complete chain with different least and greatest elements 0 and 1, respectively. Let $L_0 = L \setminus \{0\}$ and $L_1 = L \setminus \{1\}$. Denote by L^X the set of all L- subsets of a non-empty set X.

By a L- filter on X ([9, 10]) is meant a mapping $\mathcal{M}: L^X \to L$ such that $\mathcal{M}(\overline{\alpha}) \leq \alpha$ holds for all $\alpha \in L$ and $\mathcal{M}(\overline{1}) = 1$, and also $\mathcal{M}(f \wedge g) = \mathcal{M}(f) \wedge \mathcal{M}(g)$ for all $f, g \in L^X$. A L- filter \mathcal{M} is called homogeneous if $\mathcal{M}(\overline{\alpha}) = \alpha$ for all $\alpha \in L$. If \mathcal{M} and \mathcal{N} are L- filters on X, \mathcal{M} is said to be finer than \mathcal{N} , denoted by, $\mathcal{M} \leq \mathcal{N}$, provided $\mathcal{M}(f) \geq \mathcal{N}(f)$ holds for all $f \in L^X$. By $\mathcal{M} \not\leq \mathcal{N}$ we denote that \mathcal{M} is not finer than \mathcal{N} .

For any set A of L- filters on X, the infimum $\bigwedge_{\mathcal{M}\in A}\mathcal{M}$, with respect to the finer relation on L- filters, does not exist in general. The infimum $\bigwedge_{\mathcal{M}\in A}\mathcal{M}$ of A exists if and only if for each non-empty finite subset $\{\mathcal{M}_1,\ldots,\mathcal{M}_n\}$ of A we have $\mathcal{M}_1(f_1)\wedge\cdots\wedge\mathcal{M}_n(f_n)\leq\sup(f_1\wedge\cdots\wedge f_n)$ for all $f_1,\ldots,f_n\in L^X$ ([9]). If the infimum of A exists, then for each $f\in L^X$ and n as a positive integer we have

$$\left(\bigwedge_{\mathcal{M}\in A}\mathcal{M}\right)(f) = \bigvee_{\substack{f_1\wedge\dots\wedge f_n\leq f,\\M_1,\dots,M_n\in A}} \left(\mathcal{M}_1(f_1)\wedge\dots\wedge\mathcal{M}_n(f_n)\right).$$

A prefilter on X is a non-empty subset \mathcal{F} of L^X which does not contain $\overline{0}$ and closed under finite infima and super sets ([15]). For each L- filter \mathcal{M} on X, the subset α -pr \mathcal{M} of L^X defined by:

$$\alpha$$
-pr $\mathcal{M} = \{ f \in L^X \mid \mathcal{M}(f) \ge \alpha \}$

is a prefilter on X.

A valued L- filter base on a set X ([10]) is a family $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ of non-empty subsets of L^X such that the following conditions are fulfilled:

- (V1) $f \in \mathcal{B}_{\alpha}$ implies $\alpha \leq \sup f$.
- (V2) For all $\alpha, \beta \in L_0$ and all mappings $f \in \mathcal{B}_{\alpha}$ and $g \in \mathcal{B}_{\beta}$, if even $\alpha \wedge \beta > 0$ holds, then there are a $\gamma \geq \alpha \wedge \beta$ and a L- set $h \leq f \wedge g$ such that $h \in \mathcal{B}_{\gamma}$.

Each valued L- filter base $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ on a set X defines a L- filter \mathcal{M} on X by $\mathcal{M}(f) = \bigvee_{g \in \mathcal{B}_{\alpha}, g \leq f} \alpha$ for all $f \in L^X$. On the other hand, each L- filter \mathcal{M} can

be generated by many valued L- filter bases, and among them the greatest one $(\alpha\text{-pr }\mathcal{M})_{\alpha\in L_0}$.

Proposition 2.1 [10] There is a one-to-one correspondence between the L- filters \mathcal{M} on X and the families $(\mathcal{M}_{\alpha})_{\alpha \in L_0}$ of prefilters on X which fulfill the following conditions:

- (1) $f \in \mathcal{M}_{\alpha} \text{ implies } \alpha \leq \sup f$.
- (2) $0 < \alpha \leq \beta \text{ implies } \mathcal{M}_{\alpha} \supseteq \mathcal{M}_{\beta}.$
- (3) For each $\alpha \in L_0$ with $\bigvee_{0 < \beta < \alpha} \beta = \alpha$ we have $\bigcap_{0 < \beta < \alpha} \mathcal{M}_{\beta} = \mathcal{M}_{\alpha}$.

This correspondence is given by $\mathcal{M}_{\alpha} = \alpha\text{-pr }\mathcal{M}$ for all $\alpha \in L_0$ and $\mathcal{M}(f) = \bigvee_{g \in \mathcal{M}_{\alpha}, g \leq f} \alpha$ for all $f \in L^X$.

Fuzzy neighborhood filters. In the following the L- topology τ on a set X in sense of ([8, 13]) will be used. $\operatorname{int}_{\tau}$ and cl_{τ} denote the interior and the closure operators with respect to τ , respectively. For each L- topological space (X, τ) and each $x \in X$ the mapping $\mathcal{N}(x) : L^X \to L$ defined by

$$\mathcal{N}(x)(f) = \operatorname{int}_{\tau} f(x)$$

for all $f \in L^X$ is a L- filter on X, called the L- neighborhood filter of the space (X, τ) at x ([11]).

 $f \in L^X$ is called a τ -neighborhood at $x \in X$ provided $\alpha \leq \operatorname{int}_{\tau} f(x)$ for some $\alpha \in L_0$. That is, f is a τ -neighborhood at x if $f \in \alpha$ -pr $\mathcal{N}(x)$ for some $\alpha \in L_0$.

Let (X, τ) and (Y, σ) be two L- topological spaces. Then the mapping $f: (X, \tau) \to (Y, \sigma)$ is called L- continuous (or (τ, σ) -continuous) provided

$$\operatorname{int}_{\sigma} g \circ f \leq \operatorname{int}_{\tau}(g \circ f) \text{ for all } g \in L^{Y}.$$

3. L-topological groups

In the following we focus our study on a multiplicative group G. We denote, as usual, the identity element of G by e and the inverse of an element a of G by a^{-1} .

Let $\pi: G \times G \to G$ be a mapping defined by

$$\pi(a,b) = ab$$
 for all $a,b \in G$,

and $i: G \to G$ a mapping defined by

$$i(a) = a^{-1}$$
 for all $a \in G$,

that is, π and i are the binary operation and the unary operation of the inverse on G, respectively.

Here, we define the product of $f, g \in L^G$ with respect to the binary operation π on G as the L- set fg in G defined by:

$$fg = \bigwedge_{f(x)>0, g(y)>0} (xy)_1.$$
 (3.1)

In particular, for all $a \in G$ and all $f \in L^G$, we have $af \in L^G$ defined by

$$af = \bigwedge_{f(x)>0} (ax)_1 \tag{3.2}$$

and $fa \in L^G$ defined by

$$fa = \bigwedge_{f(x)>0} (xa)_1 \tag{3.3}$$

Also, we can define the inverse of $f \in L^G$ with respect to the unary operation i on G as the L- set f^{-1} on G by:

$$f^{-1}(x) = f(x^{-1})$$
 for all $x \in G$. (3.4)

The following definitions are similar to those in [14].

Definition 3.1 Let τ be a L- topology on a group G. The mapping $\pi: (G \times G, \tau \times \tau) \to (G, \tau)$ is called $(\tau \times \tau, \tau)$ -continuous in each variable separately if for all $f \in \alpha$ -pr $\mathcal{N}(ab)$, there exists $g \in \alpha$ -pr $\mathcal{N}(b)$ such that $ag \leq f$ or there exists $h \in \alpha$ -pr $\mathcal{N}(a)$ such that $hb \leq f$ for some $\alpha \in L_0$ and for all $a, b \in G$.

Definition 3.2 Let G be a group and τ be a L- topology on G. Then the pair (G, τ) will be called a semi-L-topological group if the mapping π is $(\tau \times \tau, \tau)$ -continuous in each variable separately.

Definition 3.3 The mapping π is called $(\tau \times \tau, \tau)$ -continuous everywhere if for all $f \in \alpha$ -pr $\mathcal{N}(ab)$, there exist $g \in \alpha$ -pr $\mathcal{N}(a)$ and $h \in \alpha$ -pr $\mathcal{N}(b)$ such that $gh \leq f$ for some $\alpha \in L_0$ and for all $a, b \in G$.

Definition 3.4 The mapping i is called (τ, τ) -continuous if for all $f \in \alpha$ -pr $\mathcal{N}(a^{-1})$, there exists an $g \in \alpha$ -pr $\mathcal{N}(a)$ such that $g^{-1} \leq f$ for some $\alpha \in L_0$ and for all $a \in G$.

Definition 3.5 [1] Let G be a group and τ be a L- topology on G. Then the pair (G, τ) will be called an L-topological group if the mapping π is $(\tau \times \tau, \tau)$ -continuous everywhere and the mapping i is (τ, τ) -continuous.

Clearly, every L-topological group is a semi – L-topological group.

Proposition 3.1 The pair (G, τ) is an L-topological group if and only if for all $f \in \alpha\text{-pr }\mathcal{N}(a^{-1}b)$, there exist $g \in \alpha\text{-pr }\mathcal{N}(a)$ and $h \in \alpha\text{-pr }\mathcal{N}(b)$ such that $g^{-1}h \leq f$ for some $\alpha \in L_0$ and for all $a, b \in G$.

Proof. Obvious. \square

Let us call a L- set $f \in L^G$ symmetric if the inverse f^{-1} , defined by (3.4), fulfills that $f = f^{-1}$.

For each group G and $a \in G$, the *left* and *right translations* are the homomorphisms $l_a : G \to G$ defined by $l_a(x) = ax$ and $R_a : G \to G$ defined by $R_a(x) = xa$

for each $x \in G$, respectively. The left and right translations in L-topological groups fulfill the following result.

Proposition 3.2 [7] Let (G, τ) be an L-topological group. Then for each $a \in G$ the left and right translations l_a and R_a are L-homeomorphisms.

We shall use the following result.

Lemma 3.1 Let f be an open L- set in an L-topological group (G, τ) . Then for any $x_0 \in G$ the L- sets fx_0 and x_0f are also open.

Proof. Consider the mapping

$$h: G \to G \times G, \ x \mapsto (x_0^{-1}, x)$$

and the projection mappings

$$p_1: G \times G \to G, \ (x_1, x_2) \mapsto x_1$$

and

$$p_2: G \times G \to G, \ (x_1, x_2) \mapsto x_2.$$

Then $(p_1 \circ h)(x) = x_0^{-1}$ and $(p_2 \circ h)(x) = x$. Since $(p_1 \circ h)$ and $(p_2 \circ h)$ are (τ, τ) -continuous, then h is also $(\tau, \tau \times \tau)$ -continuous. Now, we have

$$\pi: G \times G \to G, (x_1, x_2) \mapsto x_1 x_2$$

is $(\tau \times \tau, \tau)$ -continuous, and thus the mapping $\lambda = \pi \circ h$, for which $\lambda(x) = \pi(h(x)) = \pi(x_0^{-1}, x) = x_0^{-1}x$ for all $x \in G$, is (τ, τ) -continuous. Also, $\lambda^{-1}(x_0^{-1}x) = x$ for all $x \in G$, that is, $\lambda^{-1}(x) = x_0x$ for all $x \in G$. In particular, $x_0f = \lambda^{-1}(f)$ is a L- open set in (G, τ) . fx_0 is also open with a similar proof. \square

Recall that: If $f: X \to Y$ is a mapping between the non-empty sets X and Y and $h \in L^Y$, then the *preimage* $f^{-1}(h)$ of h with respect to f is defined by $f^{-1}(h) = h \circ f$.

Now, we prove the following result.

Lemma 3.2 Let (G, τ) be an L-topological group and $x_0 \in G$. Then

 $f \in \alpha$ -pr $\mathcal{N}(e)$ if and only if $x_0 f \in \alpha$ -pr $\mathcal{N}(x_0)$ if and only if $fx_0 \in \alpha$ -pr $\mathcal{N}(x_0)$.

Proof. Since the mapping $\lambda = \pi \circ h$, as in Lemma 3.1, is (τ, τ) -continuous, then $\operatorname{int}_{\tau} g \circ \lambda \leq \operatorname{int}_{\tau} (g \circ \lambda)$ for all $g \in L^G$. That is,

$$\operatorname{int}_{\tau} f(x_0^{-1} x) = \operatorname{int}_{\tau} f(\lambda(x)) \le \operatorname{int}_{\tau} (f \circ \lambda)(x) = \operatorname{int}_{\tau} (\lambda^{-1}(f))(x) = \operatorname{int}_{\tau} (x_0 f)(x)$$

for all $x \in G$ and all $f \in L^G$. Hence, $f \in \alpha$ -pr $\mathcal{N}(e)$ if and only if $x_0 f \in \alpha$ -pr $\mathcal{N}(x_0)$. The other case is similar and the proof is then complete. \square

4. L-topological groups and their canonical L- uniform structures

In the sequel we show that for each L-topological group (G, τ) , there are unique left and right invariant L- uniform structures on G compatible with τ .

For a family $(\mathcal{V}_{\alpha})_{\alpha \in L_0}$ of subsets \mathcal{V}_{α} of L^X , consider the following conditions:

- (e1) For all $\alpha \in L_0$, if $0 < \beta \le \alpha$, then $\mathcal{V}_{\alpha} \subseteq \mathcal{V}_{\beta}$,
- (e2) For all $\alpha \in L_0$ with $\bigvee_{0 < \beta < \alpha} \beta = \alpha$, we have $\mathcal{V}_{\alpha} = \bigcap_{0 < \beta < \alpha} \mathcal{V}_{\beta}$,
- (e3) For all $\alpha \in L_0$ and all $f \in \mathcal{V}_{\alpha}$, we have $\alpha \leq \sup f$,
- (e4) For all $\alpha \in L_0$ and all $f \in \mathcal{V}_{\alpha}$, there exists $g \in \mathcal{V}_{\alpha}$ such that $g^{-1} \leq f$,
- (e5) For all $\alpha \in L_0$ and all $f \in \mathcal{V}_{\alpha}$, there exists $g \in \mathcal{V}_{\alpha}$ such that $gg \leq f$.

Proposition 4.1 Let $\mathcal{N}(e)$ be the L- neighborhood filter at the identity element e of an L-topological group (G,τ) . Then the family $(\alpha\operatorname{-pr}\mathcal{N}(e))_{\alpha\in L_0}$ of prefilters $\alpha\operatorname{-pr}\mathcal{N}(e)$ fulfills the conditions (e1) - (e5).

Proof. Since $0 < \beta \le \alpha$ and $f \in \alpha\text{-pr}\mathcal{N}(e)$ imply that $\beta \le \alpha \le \operatorname{int}_{\tau} f(e)$, then $f \in \beta\text{-pr}\mathcal{N}(e)$. Hence, $\alpha\text{-pr}\mathcal{N}(e) \subseteq \beta\text{-pr}\mathcal{N}(e)$, and (e1) is fulfilled.

From (e1), we get that α -pr $\mathcal{N}(e) \subseteq \bigcap_{0 < \beta < \alpha} \beta$ -pr $\mathcal{N}(e)$. Now, if $f \in \bigcap_{0 < \beta < \alpha} \beta$ -pr $\mathcal{N}(e)$, then $f \in \beta$ -pr $\mathcal{N}(e)$ for all $\beta \in L_0$ with $\alpha = \bigvee_{0 < \beta < \alpha} \beta$, which means that $f \in \alpha$ -pr $\mathcal{N}(e)$ and hence (e2) holds.

(e3) is evident.

Since $i(e) = e^{-1} = e$ and i is (τ, τ) -continuous, then (e4) is fulfilled.

since $\pi(e,e)=ee=e$ and π is $(\tau\times\tau,\tau)$ -continuous everywhere, then (e5) is fulfilled. \square

Fuzzy uniform structures. Let \mathcal{U} be a L- filter on $X \times X$. The inverse \mathcal{U}^{-1} of \mathcal{U} is a L- filter on $X \times X$ defined by $\mathcal{U}^{-1}(u) = \mathcal{U}(u^{-1})$ for all $u \in L^{X \times X}$, where u^{-1} is the inverse of u defined by: $u^{-1}(x,y) = u(y,x)$ for all $x,y \in X$. Let, each $\alpha \in L$, $\widetilde{\alpha}$ denote the constant mapping : $X \times X \to L$ defined by $\widetilde{\alpha}(x,y) = \alpha$ for all $x,y \in X$ ([12]).

For each pair (x,y) of elements x,y of X, the mapping $(x,y)^{\bullet}: L^{X\times X} \to L$ defined by $(x,y)^{\bullet}(u) = u(x,y)$ for all $u \in L^{X\times X}$ is a homogeneous L- filter on $X\times X$. Let $\mathcal U$ and $\mathcal V$ be L- filters on $X\times X$ such that $(x,y)^{\bullet}\leq \mathcal U$ and $(y,z)^{\bullet}\leq \mathcal V$ hold for some $x,y,z\in X$. Then the *composition* $\mathcal V\circ\mathcal U$ of $\mathcal U$ and $\mathcal V$ is ([12]) the L-filter on $X\times X$ defined by

$$(\mathcal{V} \circ \mathcal{U})(w) = \bigvee_{v \circ u \le w} (\mathcal{U}(u) \wedge \mathcal{V}(v))$$
(4.1)

for all $w \in L^{X \times X}$, where $u, v, v \circ u \in L^{X \times X}$ and

$$(v \circ u)(x,y) = \bigvee_{z \in X} (u(x,z) \wedge v(z,y))$$

$$(4.2)$$

for all $x, y \in X$.

By a L- uniform structure $\mathcal U$ on a set X ([12]) we mean a L- filter on $X \times X$ such that:

(U1) $(x,x)^{\cdot} \leq \mathcal{U}$ for all $x \in X$.

(U2)
$$U = U^{-1}$$
.

(U3)
$$\mathcal{U} \circ \mathcal{U} \leq \mathcal{U}$$
.

A set X equipped with a L- uniform structure \mathcal{U} is called a L- uniform space.

For any complete chain we have the following result.

Lemma 4.1 The supremum of two L- uniform structures is a L- uniform structure.

Proof. Clear. \square

Proposition 4.2 [12] There is a one - to - one correspondence between the L-uniform structures \mathcal{U} on X and the families $(\mathcal{U}_{\alpha})_{\alpha \in L_0}$ of prefilters on $X \times X$ which fulfill the following conditions:

- (u1) $0 < \beta \leq \alpha \text{ implies } \mathcal{U}_{\alpha} \subseteq \mathcal{U}_{\beta}.$
- (u2) For each $\alpha \in L_0$ with $\bigvee_{0 < \beta < \alpha} \beta = \alpha$, we have $\mathcal{U}_{\alpha} = \bigcap_{0 < \beta < \alpha} \mathcal{U}_{\beta}$.
- (u3) For all $\alpha \in L_0$, $u \in \mathcal{U}_{\alpha}$ and $x \in X$, we have $\alpha \leq u(x, x)$.
- (u4) $u \in \mathcal{U}_{\alpha} \text{ implies } u^{-1} \in \mathcal{U}_{\alpha} \text{ for all } \alpha \in L_0.$
- (u5) For each $\alpha \in L_0$ and each $u \in \mathcal{U}_{\alpha}$, we have $\alpha \leq \bigvee_{v \in \mathcal{U}_{\beta}, v \circ v \leq u} \beta$.

This correspondence is given by $\mathcal{U}_{\alpha} = \alpha \operatorname{-pr} \mathcal{U}$ for all $\alpha \in L_0$ and $\mathcal{U}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}, v \leq u} \alpha$ for all $u \in L^{X \times X}$.

Now we shall prove the following important results in which those conditions (e1) - (e5) for the family $(\alpha\text{-pr}\mathcal{N}(e))_{\alpha\in L_0}$ are necessary to construct L- uniform structures by which the L-topological group (G,τ) is uniformizable.

First, we construct these L- uniform structures and then, in another proposition, we show that (G, τ) is uniformizable.

Proposition 4.3 Let (G, τ) be an L-topological group. Then the families $(\mathcal{U}_{\alpha}^{l})_{\alpha \in L_{0}}$ and $(\mathcal{U}_{\alpha}^{r})_{\alpha \in L_{0}}$ of the subsets \mathcal{U}_{α}^{l} and \mathcal{U}_{α}^{r} of $L^{G \times G}$ defined by

$$\mathcal{U}_{\alpha}^{l} = \{ u \in L^{G \times G} \mid u(x, y) = (f \wedge f^{-1})(x^{-1}y) \text{ for some } f \in \alpha\text{-pr}\,\mathcal{N}(e) \}$$
 (4.3)

and

$$\mathcal{U}_{\alpha}^{r} = \{ u \in L^{G \times G} \mid u(x, y) = (f \wedge f^{-1})(xy^{-1}) \text{ for some } f \in \alpha \text{-pr } \mathcal{N}(e) \}$$
 (4.4)

correspond L- uniform structures \mathcal{U}^l and \mathcal{U}^r on G, respectively by the following:

$$\mathcal{U}_{\alpha}^{l} = \alpha \operatorname{-pr} \mathcal{U}^{l} \qquad and \qquad \mathcal{U}^{l}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}^{l}, v \leq u} \alpha$$
 (4.5)

and

$$\mathcal{U}_{\alpha}^{r} = \alpha \operatorname{-pr} \mathcal{U}^{r} \qquad and \qquad \mathcal{U}^{r}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}^{r}, v \leq u} \alpha.$$
 (4.6)

Proof. Since $\tilde{0}(x,x) = 0 \neq 1 = (f \wedge f^{-1})(e) = (f \wedge f^{-1})(x^{-1}x)$ for all $f \in \alpha$ -pr $\mathcal{N}(e)$ and all $x \in G$, then $\tilde{0} \notin \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$.

Also, $\tilde{1} \in \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$, from that there exists a symmetric L- set $f = e_{1} = (x^{-1}yy^{-1}x)_{1} = (x^{-1}y)_{1}(y^{-1}x)_{1} \in \alpha$ -pr $\mathcal{N}(e)$ such that $(f \wedge f^{-1})(x^{-1}y) = f(x^{-1}y) \wedge f(y^{-1}x) = 1$ for all $x, y \in G$.

Let $u \in \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$ and $v \geq u$. Then $v(x,y) \geq (f \wedge f^{-1})(x^{-1}y)$ for some $f \in \alpha\text{-pr}\mathcal{N}(e)$ and for all $x,y \in G$. But $v \leq \tilde{1} \in \mathcal{U}_{\alpha}^{l}$ implies that there is $g \in \alpha\text{-pr}\mathcal{N}(e)$ such that $v(x,y) \leq (g \wedge g^{-1})(x^{-1}y)$ for all $x,y \in G$. That is, there is some $h \in \alpha\text{-pr}\mathcal{N}(e)$ such that $v(x,y) = (h \wedge h^{-1})(x^{-1}y)$ for all $x,y \in G$. Hence $v \in \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$.

Since $(f \wedge g) \in \alpha\text{-pr}\mathcal{N}(e)$ whenever $f \in \alpha\text{-pr}\mathcal{N}(e)$ and $g \in \alpha\text{-pr}\mathcal{N}(e)$, then for any $u, v \in \mathcal{U}^l_{\alpha}$, we get that

$$(u \wedge v)(x,y) = u(x,y) \wedge v(x,y)$$

$$= (f \wedge f^{-1})(x^{-1}y) \wedge (g \wedge g^{-1})(x^{-1}y) \text{ for some } f,g \in \alpha\text{-pr}\mathcal{N}(e)$$

$$= ((f \wedge g) \wedge (f \wedge g)^{-1})(x^{-1}y) \text{ for some } f,g \in \alpha\text{-pr}\mathcal{N}(e).$$

Hence $(u \wedge v) \in \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$. Thus \mathcal{U}_{α}^{l} is a prefilter on $G \times G$ for all $\alpha \in L_{0}$.

Now, let $0 < \beta \le \alpha$ and $u \in \mathcal{U}_{\alpha}^{l}$. Then from (e1) for the family $(\alpha \operatorname{-pr} \mathcal{N}(e))_{\alpha \in L_{0}}$, we get that $u(x,y) = (g \wedge g^{-1})(x^{-1}y)$ for some $g \in \beta \operatorname{-pr} \mathcal{N}(e)$ for all $x,y \in G$, and then $u \in \mathcal{U}_{\beta}^{l}$. Hence, the condition (u1) of Proposition 4.2 holds.

From (u1) of Proposition 4.2 and from (e2) for $(\alpha \operatorname{-pr} \mathcal{N}(e))_{\alpha \in L_0}$, we get that (u2) of Proposition 4.2 is fulfilled.

From (e3) and (e4) for $(\alpha\text{-pr}\mathcal{N}(e))_{\alpha\in L_0}$, we have for all $\alpha\in L_0$ and all $u\in\mathcal{U}_{\alpha}^l$ that

$$u(x,x) = (f \wedge f^{-1})(x^{-1}x) = (f \wedge f^{-1})(e) \ge \alpha$$

for some $f \in \alpha$ -pr $\mathcal{N}(e)$. Hence, (u3) of Proposition 4.2 holds.

For all $\alpha \in L_0$ and all $u \in \mathcal{U}_{\alpha}^l$, we have for all $x, y \in G$ that

$$u^{-1}(x,y) = u(y,x) = (f \wedge f^{-1})(y^{-1}x)$$

for some $f \in \alpha$ -pr $\mathcal{N}(e)$. Since (3.4) implies, for all $x, y \in G$, that

$$(f \wedge f^{-1})(x^{-1}y) = f(x^{-1}y) \wedge f^{-1}(x^{-1}y) = f^{-1}(y^{-1}x) \wedge f(y^{-1}x) = (f \wedge f^{-1})(y^{-1}x),$$

that is, u(x,y) = u(y,x) for all $x,y \in G$, then $u \in \mathcal{U}_{\alpha}^{l}$ if and only if $u^{-1} \in \mathcal{U}_{\alpha}^{l}$ and thus (u4) of Proposition 4.2 holds.

From (e5) for $(\alpha\text{-pr}\mathcal{N}(e))_{\alpha\in L_0}$, we have for all $\alpha\in L_0$ and all $f\in \alpha\text{-pr}\mathcal{N}(e)$ that there exists $g\in \beta\text{-pr}\mathcal{N}(e)$, $\beta\in L_0$, such that $gg\leq f$. For any $u\in \mathcal{U}_{\alpha}^l$ and all $x,y\in G$, we have $u(x,y)=(f\wedge f^{-1})(x^{-1}y)$ for some $f\in \alpha\text{-pr}\mathcal{N}(e)$, which means that there exists $v\in \mathcal{U}_{\beta}^l$, $\beta\in L_0$, such that (4.2) implies for all $x,y\in G$ that:

$$\begin{array}{lcl} (v \circ v)(x,y) & = & \bigvee_{z \in G} (v(x,z) \wedge v(z,y)) \\ \\ & = & \bigvee_{z \in G} ((g \wedge g^{-1})(x^{-1}z) \wedge (g \wedge g^{-1})(z^{-1}y)) \\ \\ & \leq & (f \wedge f^{-1})(x^{-1}y) \\ \\ & = & u(x,y). \end{array}$$

Hence, by means of (e5) for $(\alpha \operatorname{-pr} \mathcal{N}(e))_{\alpha \in L_0}$, we get

$$\alpha \le \bigvee_{v \in \mathcal{U}_{\alpha}^{l}, (v \circ v) \le u} \beta = \bigvee_{g \in \beta \text{-pr } \mathcal{N}(e), gg \le f} \beta$$

and then (u5) of Proposition 4.2 holds.

Now, we have the family $(\mathcal{U}_{\alpha}^{l})_{\alpha\in L_{0}}$ is a family of prefilters on $G\times G$ and fulfills the conditions (u1) - (u5). From Proposition 4.2, we get that $(\mathcal{U}_{\alpha}^{l})_{\alpha\in L_{0}}$ corresponds a L- uniform structure \mathcal{U}^{l} on G. This correspondence is given by

$$\mathcal{U}^l(u) = \bigvee_{v \in \mathcal{U}^l_{\alpha}, v \le u} \alpha \text{ and } \mathcal{U}^l_{\alpha} = \alpha \text{-pr } \mathcal{U}^l.$$

The same proof can be done with the family $(\mathcal{U}_{\alpha}^r)_{\alpha \in L_0}$. \square

Definition 4.1 \mathcal{U}^l and \mathcal{U}^r defined by (4.5) and (4.6) are called *left* L- uniform structure and *right* L- uniform structure on G, respectively.

An L-topological group (G, τ) is called *abelian* if the group G is abelian.

Proposition 4.4 For abelian L-topological groups, the left and the right L- uniform structures coincide.

Proof. Since

$$(f \wedge f^{-1})(x^{-1}y) = (f \wedge f^{-1})(y^{-1}x) = (f \wedge f^{-1})(xy^{-1})$$

for all $x, y \in G$ and for some $f \in \alpha$ -pr $\mathcal{N}(e)$, then $\mathcal{U}_{\alpha}^{l} = \mathcal{U}_{\alpha}^{r}$ for all $\alpha \in L_{0}$. Therefore, $\mathcal{U}^{l} = \mathcal{U}^{r}$. \square

Let \mathcal{U} be a L- filter on $X \times X$ such that $(x, x)^{\bullet} \leq \mathcal{U}$ holds for all $x \in X$, and let \mathcal{M} be a L- filter on X. Then the mapping $\mathcal{U}[\mathcal{M}]: L^X \to L$, defined by

$$\mathcal{U}[\mathcal{M}](f) = \bigvee_{u[g] \le f} (\mathcal{U}(u) \wedge \mathcal{M}(g))$$
(4.7)

for all $f \in L^X$, is a L- filter on X, called the image of \mathcal{M} with respect to \mathcal{U} ([12]), where $u \in L^{X \times X}$ and $g, u[g] \in L^X$ such that:

$$u[g](x) = \bigvee_{y \in X} (g(y) \wedge u(y, x)). \tag{4.8}$$

Proposition 4.5 [12] Let \mathcal{U} be a L- filter on $X \times X$ such that $(x, x)^{\bullet} \leq \mathcal{U}$ holds for all $x \in X$, and let \mathcal{M} be a L- filter on X. Then the family $(\mathcal{L}_{\alpha})_{\alpha \in L_0}$ with

$$\mathcal{L}_{\alpha} = \{ f \in L^X \mid u[g] \leq f \text{ for some } u \in \alpha\text{-pr}\mathcal{U} \text{ and } g \in \alpha\text{-pr}\mathcal{M} \}$$

is a valued L- filter base of $\mathcal{U}[\mathcal{M}]$, which consists of prefilters on X such that $\alpha \leq \beta$ implies $\mathcal{L}_{\alpha} \supseteq \mathcal{L}_{\beta}$ for all $\alpha, \beta \in L_0$.

Remark 4.1 From Proposition 4.5, we get for a L- uniform structure \mathcal{U} on X and a homogeneous L- filter \dot{x} at $x \in X$, that the family $(\mathcal{L}_{\alpha})_{\alpha \in L_0}$ with

$$\mathcal{L}_{\alpha} = \{ f \in L^X \mid u[g] \le f \text{ for some } u \in \alpha\text{-pr}\,\mathcal{U} \text{ and } \alpha \le g(x) \}$$
 (4.9)

is a valued L- filter base of $\mathcal{U}[\dot{x}]$, and moreover $\mathcal{L}_{\alpha} = \alpha$ -pr $\mathcal{U}[\dot{x}]$ for all $\alpha \in L_0$.

To each L- uniform structure \mathcal{U} on X is associated a stratified L- topology $\tau_{\mathcal{U}}$. The related interior operator $\operatorname{int}_{\mathcal{U}}$ is given by ([12]):

$$(\operatorname{int}_{\mathcal{U}} f)(x) = \mathcal{U}[\dot{x}](f) \tag{4.10}$$

for all $x \in X$, $f \in L^X$. A L- set $f \in L^X$ is called a $\tau_{\mathcal{U}}$ -neighborhood of $x \in X$ provided $\alpha \leq \operatorname{int}_{\mathcal{U}} f(x)$ for some $\alpha \in L_0$.

In the following proposition, we show that every L-topological group is uniformizable.

Proposition 4.6 Any L-topological group (G, τ) is uniformizable. That is, $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)} = \tau$.

Proof. From Lemma 4.1 and Proposition 4.3, we get that both of \mathcal{U}^l , \mathcal{U}^r and $\mathcal{U}^l \vee \mathcal{U}^r$ are L- uniform structures on G.

Since for all $x \in G$ and all $f \in L^G$ we have, from (4.7), (4.10) and Remark 4.1, that:

$$\operatorname{int}_{\mathcal{U}^l} f(x) = \mathcal{U}^l[\dot{x}](f) = \bigvee_{u[g] \le f} (\mathcal{U}^l(u) \land g(x)) = 1$$

is equivalent to

$$\operatorname{int}_{\mathcal{U}^r} f(x) = \mathcal{U}^r[\dot{x}](f) = \bigvee_{u[g] \le f} (\mathcal{U}^r(u) \land g(x)) = 1$$

equivalent to

$$\operatorname{int}_{(\mathcal{U}^l\vee\mathcal{U}^r)}f(x)=(\mathcal{U}^l\vee\mathcal{U}^r)[\dot{x}](f)=\bigvee_{u[g]\leq f}((\mathcal{U}^l\vee\mathcal{U}^r)(u)\wedge g(x))=1,$$

which means that f is a $\tau_{\mathcal{U}^l}$ -neighborhood of an element x if and only if it is a $\tau_{\mathcal{U}^r}$ -neighborhood of x if and only if it is a $\tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$ -neighborhood of x. Hence, $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$.

From (4.7) and (4.8), and also from Remark 4.1, we have

$$\mathcal{U}^{l}[\dot{x}](f) = \bigvee_{g \in \alpha \text{-} \operatorname{pr} \mathcal{U}^{l}[\dot{x}], g \leq f} \alpha$$

$$= \bigvee_{u[g] \leq f} (\mathcal{U}^{l}(u) \wedge g(x))$$

$$= \bigvee_{h \in \alpha \text{-} \operatorname{pr} \mathcal{N}(x), h \leq f} \alpha$$

$$= \mathcal{N}(x)(f)$$

for all $x \in G$ and all $f \in L^G$. Hence, the L- neighborhood filter $\mathcal{U}^l[\dot{x}]$ of $(G, \tau_{\mathcal{U}^l})$ at every $x \in G$ is identical with the L- neighborhood filter $\mathcal{N}(x)$ at every x in the L-topological group (G, τ) . Thus, $\tau_{\mathcal{U}^l} = \tau$, and therefore (G, τ) is uniformizable. \square

In the following we show that these conditions (e1) - (e5) for a family of prefilters on G are also sufficient to construct from the group G an L-topological group.

Proposition 4.7 Let G be a group and e the identity element of G, and let $(\mathcal{V}_{\alpha}^{e})_{\alpha \in L_{0}}$ be a family of prefilters on G fulfilling conditions (e1) - (e5). Defining, for each $\alpha \in L_{0}$, the subsets

$$\mathcal{U}_{\alpha}^{l} = \{u \in L^{G \times G} \mid u(x,y) = (f \wedge f^{-1})(x^{-1}y) \text{ for some } f \in \mathcal{V}_{\alpha}^{e}\}$$

and

$$\mathcal{U}_{\alpha}^r = \{u \in L^{G \times G} \mid u(x,y) = (f \wedge f^{-1})(xy^{-1}) \text{ for some } f \in \mathcal{V}_{\alpha}^e\}$$

of $L^{G\times G}$. Hence, we have the left and the right L- uniform structures \mathcal{U}^l and \mathcal{U}^r on G defined by (4.5) and (4.6), respectively. Moreover, $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$ is a L-topology τ on G for which the pair (G,τ) is an L-topological group. Finally, for each $\alpha \in L_0$, we have $\mathcal{V}^e_{\alpha} = \alpha\text{-pr}\mathcal{N}(e)$, where $\mathcal{N}(e)$ is the L- neighborhood filter at e with respect to the L- topology τ on G.

Proof. As in Propositions 4.3 and 4.6, we get that \mathcal{U}^l and \mathcal{U}^r are the left and the right L- uniform structures on G for which $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$ is a L- topology on the group G. Denote $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau_{(\mathcal{U}^l \vee \mathcal{U}^r)}$ by τ .

It remains to prove that (G, τ) is an L-topological group and that $\mathcal{V}_{\alpha}^{e} = \alpha \operatorname{-pr} \mathcal{N}(e)$ for all $\alpha \in L_{0}$.

Now, from that the conditions of Proposition 2.1 are equivalent to the conditions (e1) - (e3), we get that

$$\mathcal{V}_{\alpha}^{e} = \alpha \operatorname{-pr} \mathcal{U}^{l}[\dot{e}] = \alpha \operatorname{-pr} \mathcal{U}^{r}[\dot{e}] = \alpha \operatorname{-pr} (\mathcal{U}^{l} \vee \mathcal{U}^{r})[\dot{e}]$$

for all $\alpha \in L_0$. That is, $\mathcal{V}_{\alpha}^e = \alpha \operatorname{-pr} \mathcal{N}(e)$ for all $\alpha \in L_0$, where $\mathcal{N}(e)$ is the L-neighborhood filter of (G, τ) at e.

From conditions (e4) and (e5) of the prefilters α -pr $\mathcal{N}(e)$ for all $\alpha \in L_0$, we get that for all $f \in \alpha$ -pr $\mathcal{N}(e)$, there exist $g, h \in \alpha$ -pr $\mathcal{N}(e)$ for some $\alpha \in L_0$ such that $g^{-1}h \leq f$, which means that

$$(ga)^{-1}(hb) = a^{-1}(g^{-1}h)b \le a^{-1}fb.$$

That is, from Lemma 3.2, we get that for all $\lambda = a^{-1}fb \in \alpha$ -pr $\mathcal{N}(a^{-1}b)$, there exist $\mu = ga \in \alpha$ -pr $\mathcal{N}(a)$ and $\nu = hb \in \alpha$ -pr $\mathcal{N}(b)$ such that $\mu^{-1}\nu \leq \lambda$. Hence, (G, τ) is an L-topological group. \square

Let us define the following.

Definition 4.2 Let \mathcal{U} be a L- uniform structure on a set X. Then

- (1) $u \in L^{X \times X}$ is called a *surrounding* provided $\mathcal{U}(u) \geq \alpha$ for some $\alpha \in L_0$ and $u = u^{-1}$,
- (2) A surrounding $u \in L^{X \times X}$ is called *left (right) invariant* provided

$$u(ax, ay) = u(x, y)$$
 $(u(xa, ya) = u(x, y))$ for all $a, x, y \in X$,

(3) \mathcal{U} is called a *left* (*right*) *invariant* L- uniform structure if \mathcal{U} has a valued Lfilter base consists of left (right) invariant surroundings.

Now, from Proposition 4.3, we have this remark.

Remark 4.2 In the *L*-topological group (G, τ) , for each element u in \mathcal{U}_{α}^{l} , defined by (4.3), we have $\mathcal{U}_{\alpha}^{l}(u) \geq \alpha$ for some $\alpha \in L_{0}$ and also, for all $x, y \in G$ and each $u \in \mathcal{U}_{\alpha}^{l}$, we have

$$u(x,y) = (f \wedge f^{-1})(x^{-1}y)$$
 for some $f \in \alpha$ -pr $\mathcal{N}(e)$
 $= (f \wedge f^{-1})(y^{-1}x)$ for some $f \in \alpha$ -pr $\mathcal{N}(e)$
 $= u(y,x)$
 $= u^{-1}(x,y).$

That is, \mathcal{U}_{α}^{l} is a prefilter of surroundings. Also, for all $a, x, y \in G$, we have

$$u(ax, ay) = (f \wedge f^{-1})((ax)^{-1}(ay))$$
 for some $f \in \alpha\text{-pr}\mathcal{N}(e)$
 $= (f \wedge f^{-1})(x^{-1}y)$ for some $f \in \alpha\text{-pr}\mathcal{N}(e)$
 $= u(x, y)$ for all $u \in \mathcal{U}^l_{\alpha}$ and for all $x, y \in G$.

Thus, the elements of \mathcal{U}_{α}^{l} are left invariant surroundings. Moreover, $(\mathcal{U}_{\alpha}^{l})_{\alpha \in L_{0}}$ is a valued L- filter base for the left L- uniform structure \mathcal{U}^{l} defined by (4.5), and hence \mathcal{U}^{l} is a left invariant L- uniform structure on G. By the same way, \mathcal{U}^{r} , defined by (4.6), is a right invariant L- uniform structure on G.

Notice that: Between any two systems of sets \mathcal{A} and \mathcal{B} , we recall that \mathcal{A} is called coarser than \mathcal{B} if for any $A \in \mathcal{A}$, there is $B \in \mathcal{B}$ such that $B \subseteq A$.

The following important proposition is now obtained from our last results.

Proposition 4.8 Let (G, τ) be an L-topological group. Then there exist on G a unique left invariant L- uniform structure \mathcal{U}^l and a unique right invariant L- uniform structure \mathcal{U}^r compatible with τ , constructed in Proposition 4.3 using the family $(\alpha\text{-pr}\,\mathcal{N}(e))_{\alpha\in L_0}$ of all prefilters $\alpha\text{-pr}\,\mathcal{N}(e)$, where $\mathcal{N}(e)$ is the L- neighborhood filter at the identity element e of the L-topological group (G, τ) .

Proof. From Propositions 4.3 and 4.6, and Remark 4.2, we have \mathcal{U}^l and \mathcal{U}^r are the left and the right invariant L- uniform structures on G, respectively for which $\tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r} = \tau$.

Suppose that $(\mathcal{V}_{\alpha}^{l})_{\alpha \in L_{0}}$ is a valued L- filter base for a left invariant L- uniform structure \mathcal{V}^{l} on G such that $\tau_{\mathcal{V}^{l}} = \tau_{\mathcal{U}^{l}} = \tau$.

Since for any $v_1 \in \mathcal{V}^1_{\alpha}$, there exists $v_2 \in \mathcal{V}^1_{\alpha}$ with $v_2 \leq v_1$ and $v_2(ax, ay) = v_2(x, y)$ for all $a, x, y \in G$. From (4.8), we get that $v_2[e_1](x) = v_2(e, x)$ for all $x \in G$, that is, $v_2[e_1](e) = v_2(e, e) \geq \alpha$ and there exists a left invariant surrounding $u \in \mathcal{U}^l_{\alpha}$ such that $u[e_1] \leq v_2[e_1]$.

Now, $u(x,y) = u(xx^{-1}, x^{-1}y) = u(e, x^{-1}y) = u[e_1](x^{-1}y) \leq v_2[e_1](x^{-1}y)$ for all $x, y \in G$, which means that $u(x,y) = v_2(e, x^{-1}y) = v_2(x,y)$ and also we have $v_2 \leq v_1$, so $u \leq v_1$. That is, for all $\alpha \in L_0$ and for any $v_1 \in \mathcal{V}_{\alpha}^l$, there exists $u \in \mathcal{U}_{\alpha}^l$ such that $u \leq v_1$, and this means that \mathcal{V}_{α}^l is coarser than \mathcal{U}_{α}^l for all $\alpha \in L_0$. By the

same way, we can show that \mathcal{U}_{α}^{l} is coarser than \mathcal{V}_{α}^{l} for all $\alpha \in L_{0}$, and thus $\mathcal{V}_{\alpha}^{l} = \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_{0}$. Hence, $\mathcal{V}^{l} = \mathcal{U}^{l}$.

Similarly, one can prove that the right invariant L- uniform structure \mathcal{U}^r is unique. \square

5. The relation between the L-topological groups and the $GT_{3\frac{1}{2}}$ -spaces

In this section we shall show and prove the relation between our notion of $GT_{3\frac{1}{2}}$ spaces and the notion of *L*-topological groups defined in [1].

In [2, 3, 5] we had defined the *L*- separation axioms GT_i , $i = 0, 1, 2, 3, 3\frac{1}{2}, 4$. Here, we recall some of these axioms which we need in the following.

A L- topological space (X, τ) is called ([2, 3, 5]):

- (1) GT_0 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \not\leq \mathcal{N}(y)$ or $\dot{y} \not\leq \mathcal{N}(x)$.
- (2) GT_1 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \not\leq \mathcal{N}(y)$ and $\dot{y} \not\leq \mathcal{N}(x)$.
- (3) GT_2 if for all $x, y \in X$ with $x \neq y$ we have $\mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist.
- (4) GT_3 if it is GT_1 and if for all $x \in X$ and all $F \in \tau'$ with $x \notin F$, we have $\mathcal{N}(x) \wedge \mathcal{N}(F)$ does not exist.
- (5) completely regular if for all $x \notin F \in \tau'$, there exists a L- continuous mapping $f: (X, \tau) \to (I_L, \Im)$ such that $f(x) = \overline{1}$ and $f(y) = \overline{0}$ for all $y \in F$.
- (6) $GT_{3\frac{1}{2}}$ (or *L-Tychonoff*) if it is GT_1 and completely regular.
- (7) GT_4 if it is GT_1 and if for all $F, G \in \tau'$ with $F \cap G = \emptyset$, we have $\mathcal{N}(F) \wedge \mathcal{N}(G)$ does not exist.

Denote by GT_i -space the L- topological space which is GT_i , $i = 0, 1, 2, 3, 3\frac{1}{2}, 4$.

Proposition 5.1 [2, 3, 5] Every GT_i -space is GT_{i-1} -space for each i = 1, 2, 3, 4, and $GT_{\mathcal{J}_{\frac{1}{2}}}$ -spaces fulfill the following:

every GT_4 -space is a $GT_{3\frac{1}{2}}$ -space and every $GT_{3\frac{1}{2}}$ -space is a GT_3 -space.

Proposition 5.2 [6] If \mathcal{U} is a L- uniform structure on a set X and $\tau_{\mathcal{U}}$ the Ltopology associated to \mathcal{U} , then $(X, \tau_{\mathcal{U}})$ is a completely regular space.

The fact that the L- topology of an L-topological group can be induced by a left or right invariant L- uniform structure leads us to our fundamental results in this section as follows.

Proposition 5.3 The L- topology of an L-topological group is completely regular.

Proof. The proof goes directly from Propositions 4.6 and 5.2 \square

Definition 5.1 An L-topological group (G, τ) is called *separated* if for the identity element e, we have $\bigwedge_{f \in \alpha \text{-pr} \mathcal{N}(e)} f(e) \geq \alpha$, and $\bigwedge_{f \in \alpha \text{-pr} \mathcal{N}(e)} f(x) < \alpha$ for all $x \in G$ with $x \neq e$ and for all $\alpha \in L_0$.

A L- uniform structure \mathcal{U} on a set X is called *separated* ([4]) if for all $x, y \in X$ with $x \neq y$ there is $u \in L^{X \times X}$ such that $\mathcal{U}(u) = 1$ and u(x, y) = 0. The space (X, \mathcal{U}) is called *separated* L- *uniform space*.

Proposition 5.4 [4] Let X be a set, \mathcal{U} a L- uniform structure on X and $\tau_{\mathcal{U}}$ the Ltopology associated with \mathcal{U} . Then

 (X,\mathcal{U}) is separated if and only if $(X,\tau_{\mathcal{U}})$ is GT_0 -space.

In the following result we have shown the expected relation between our notion of $GT_{3\frac{1}{2}}$ -spaces and the notion of L-topological groups.

Proposition 5.5 Let (G, τ) be an L-topological group. Then the following statements are equivalent.

- (1) The L- topology τ is GT_0 .
- (2) The L- topology τ is GT_1 .
- (3) The L- topology τ is GT_2 .
- (4) The L- topology τ is $GT_{\mathcal{J}_{\frac{1}{2}}}$.
- (5) \mathcal{U}^l is separated.
- (6) \mathcal{U}^r is separated.
- (7) The L-topological group (G, τ) is separated.

Proof.

(1) \Rightarrow (2): Let $x \neq y$ in G, then for one point (say x) there exists a τ -neighborhood f such that $\operatorname{int}_{\tau} f(x) \geq \alpha > f(y)$, which means that there is $h \in \alpha$ -pr $\mathcal{N}(e)$ such that $h = x^{-1}f$ and then $k = h \wedge h^{-1}$ is a symmetric τ -neighborhood of e, and this means that the L- set g = yk is a τ -neighborhood of y for which $\operatorname{int}_{\tau} g(y) \geq \alpha > g(x)$ because if otherwise $g(x) = yk(x) \geq \alpha$, then

$$\alpha \le g^{-1}(x^{-1}) = (h \land h^{-1})y^{-1}(x^{-1}) = (x^{-1}f \land f^{-1}x)y^{-1}(x^{-1}) \le x^{-1}fy^{-1}(x^{-1}),$$

that is, $fy^{-1}(e) \geq \alpha$, and then $f(y) \geq \alpha$ which is a contradiction. Hence there exists a τ -neighborhood g of y such that $\operatorname{int}_{\tau} g(y) \geq \alpha > g(x)$, and thus (G, τ) is a GT_1 -space.

- $(2) \Rightarrow (3)$: It is clear from Propositions 5.1 and 5.3.
- $(3) \Rightarrow (4)$: Obvious.
- $(4) \Rightarrow (5)$ and $(4) \Rightarrow (6)$: The proof comes from Proposition 4.6, and from Propositions 5.1 and 5.4.

- (5) \Rightarrow (7): Since \mathcal{U}^l is separated then, by means of Propositions 4.6 and 5.4, $\tau = \tau_{\mathcal{U}^l}$ is GT_0 . Thus for any $x \neq e$ in G, there exists $f \in \alpha\text{-pr}\mathcal{N}(e)$ such that $f(x) < \alpha \leq \operatorname{int}_{\tau} f(e) \leq f(e)$. Hence, $\bigwedge_{f \in \alpha\text{-pr}\mathcal{N}(e)} f(x) \geq \alpha$ whenever x = e and $\bigwedge_{f \in \alpha\text{-pr}\mathcal{N}(e)} f(x) < \alpha$ otherwise. That is, (G, τ) is a separated L-topological group.
 - $(6) \Rightarrow (7)$: The proof goes similar to the case $(5) \Rightarrow (7)$.
- $(7)\Rightarrow (1)$: If $x,y\in G$ with $x\neq y$, then $x^{-1}y\neq e$ and then $\bigwedge_{f\in\alpha\text{-pr}\mathcal{N}(e)}f(x^{-1}y)<\alpha$, which means that there exists $f\in\alpha\text{-pr}\mathcal{N}(e)$ such that $f(x^{-1}y)<\alpha$, that is, $xf(y)=\bigwedge_{f(z)>0}(xz)_1(y)<\alpha$, where $z=x^{-1}y$ is not allowed. Since $\{xf\mid f\in\alpha\text{-pr}\mathcal{N}(e)\}$ is itself $\alpha\text{-pr}\mathcal{N}(x)$, that is, the set of all $\alpha\text{-}L$ neighborhoods of x and $xf(y)<\alpha$. Hence, $xf(y)<\alpha\leq \operatorname{int}_{\tau}(xf)(x)$. Thus, (G,τ) is GT_0 . \square

References

- [1] T. M. G. Ahsanullah; On L-topological groups and semigroups, Ph.D Thesis, Faculty of Science, Free University of Brussels, (1984).
- [2] F. Bayoumi and I. Ibedou; T_i -spaces, I, The Journal of The Egyptian Mathematical Society, Vol. $\mathbf{10}$ (2) (2002) 179 199.
- [3] F. Bayoumi and I. Ibedou; T_i -spaces, II, The Journal of The Egyptian Mathematical Society, Vol. 10 (2) (2002) 201 215.
- [4] F. Bayoumi and I. Ibedou; The relation between the GT_i-spaces and L- proximity spaces, G-compact spaces, L- uniform spaces, The Journal of Chaos, Solitons and Fractals, 20 (2004) 955 - 966.
- [5] F. Bayoumi and I. Ibedou; $GT_{3\frac{1}{2}}$ -spaces, I, The Journal of the Egyptian Mathematical Society, Submitted.
- [6] F. Bayoumi and I. Ibedou; $GT_{3\frac{1}{2}}$ -spaces, II, The Journal of the Egyptian Mathematical Society, Submitted.

- [7] F. Bayoumi; On initial and final L-topological groups, Fuzzy Sets and Systems, Submitted.
- [8] C. L. Chang; Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182 190.
- [9] P. Eklund and W. Gähler; Fuzzy filter functors and convergence, in: Applications of Category Theory To Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht et al. (1992) 109 - 136.
- [10] W. Gähler; The general L- filter approach to L- topology, I, Fuzzy Sets and Systems,76 (1995) 205 224.
- [11] W. Gähler; The general L- filter approach to L- topology, II, Fuzzy Sets and Systems, 76 (1995) 225 - 246.
- [12] W. Gähler, F. Bayoumi, A. Kandil and A. Nouh; The theory of global L- neighbor-hood structures. (III), Fuzzy uniform structures, Fuzzy Sets and Systems, 98 (1998) 175 199.
- [13] J. A. Goguen; L-L- sets, J. Math. Anal. Appl., 18 (1967) 145 174.
- [14] T. Husain; Introduction to Topological Groups, Huntington, New York 1981.
- [15] R. Lowen; Convergence in L- topological spaces, General Topology and Appl. 10 (1979) 147 - 160.